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Search engines have become key media for our scientific, eco-
nomic, and social activities by enabling people to access informa-
tion on the web despite its size and complexity. On the down side,
search engines bias the traffic of users according to their page
ranking strategies, and it has been argued that they create a vicious
cycle that amplifies the dominance of established and already
popular sites. This bias could lead to a dangerous monopoly of
information. We show that, contrary to intuition, empirical data do
not support this conclusion; popular sites receive far less traffic
than predicted. We discuss a model that accurately predicts traffic
data patterns by taking into consideration the topical interests of
users and their searching behavior in addition to the way search
engines rank pages. The heterogeneity of user interests explains
the observed mitigation of search engines’ popularity bias.

PageRank � popularity bias � traffic � web graph

The topology of the Web as a complex, scale-free network is now
well characterized (1–5). Several growth and navigation models

have been proposed to explain the Web’s emergent topological
characteristics and their effect on users’ surfing behavior (6–12). As
the size and complexity of the Web have increased, users have
become reliant on search engines (13, 14), so that the paradigm of
search is replacing that of navigation as the main interface between
people and the Web.� This trend leads to questions about the role
of search engines in shaping the use and evolution of the Web.

A key assumption in understanding web growth is that pages
attract new links proportionally to their popularity, measured in
terms of traffic. According to preferential attachment and copy
models (2, 6, 7), which explain the rich-get-richer dynamics ob-
served in the Web’s network structure, the traffic to each page is
implicitly considered a linear function of the number of hyperlinks
pointing to that page. The proportionality between popularity and
degree is justified in a scenario in which two key assumptions hold.
First, that pages are discovered and visited by users with a random
web-surfing process; indeed this is the process modeled by the
PageRank algorithm (see the supporting information, which is
published on the PNAS web site). Second, PageRank, the likeli-
hood of visiting a page, is linearly related to degree on average,
which is supported by empirical data discussed in Materials and
Methods. The use of search engines changes this scenario, mediating
the discovery of pages by users with a combination of crawling,
retrieval, and ranking algorithms that is believed to bias traffic
toward popular sites. Pages highly ranked by search engines are
more likely to be discovered by users and consequently linked from
other pages. Because search engines heavily rely on link informa-
tion to rank results, this would in turn increase the popularity of
those pages even further. As popular pages become more and more
popular, new pages would be unlikely to be discovered (14, 16).
Such a vicious cycle (see the supporting information) would accel-
erate the feedback loop between popularity and number of links,
introducing a nonlinear acquisition rate that would dramatically
change the structure of the web graph from the current scale-free
topology to a star-like network, where a set of sites would monop-
olize all traffic (17). The presumed popularity bias phenomenon

(also known as ‘‘googlearchy’’) has been widely discussed in the
computer, social, and political sciences (16, 18–22, **).

This paper offers an empirical study of the effect of search
engines on the popularity of web pages by providing a quantitative
analysis of the relationship between traffic and degree. We show
that, contrary to common belief, the net popularity bias of search
engines is much weaker than predicted in the literature. Even
compared with the case in which no search occurs and all traffic is
generated by surfing hyperlinks, search engines direct less traffic
toward highly linked pages. More precisely, by empirical measure-
ment in a large sample of web sites, we find a sublinear growth of
traffic with in-degree. To explain this result, we refine a theoretical
model of how users search and navigate the Web (16) by incorpo-
rating a crucial ingredient: the topical content of user queries. Such
a realistic element reverses prior conclusions and accurately pre-
dicts the empirical relationship between traffic and in-degree. This
finding suggests that a key factor in explaining the effect of search
engines is the diversity and specificity of information sought by web
users, as revealed by the wide variation of result samples matching
user queries. In other words, search engines partially mitigate the
rich-get-richer nature of the Web and give new sites an increased
chance of being discovered, as long as they are about specific topics
that match the interests of users. These results are important both
in practical terms, for a quantitative assessment of page popularity,
and conceptually, as a starting point for web growth models taking
into account the interaction among search engines, user behavior,
and information diversity.

Results and Discussion
For a quantitative definition of popularity we turn to the probability
that a generic user clicks on a link leading to a specific page (21).
We will also refer to this quantity as the traffic to the same page.

As a baseline to gauge the popularity bias of search, one can
consider how web pages would gain popularity in the absence of
search engines. People would browse web pages primarily by
following hyperlinks. Other ways to discover pages, such as referral
by friends, also would be conditional on a page being discovered by
someone in the first place through links. To a first approximation,
the amount of such surfing-generated traffic directed toward a
given page is proportional to the number of links k pointing to it
(in-degree). The more pages there are that point to that page, the
larger the probability that a randomly surfing user will discover it.
Successful second-generation search engines, Google being the
premier example (23), have refined and exploited this effect in their
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ranking functions to gauge page importance. The PageRank value
p(i) of page i is defined as the probability that a random walker
surfing the web graph will visit i next (see the supporting informa-
tion), thereby estimating the page’s discovery probability according
to the global structure of the Web. Experimental observations and
theoretical results show that, with good approximation, p � k (see
Materials and Methods). Therefore, in the absence of search engines,
surfing traffic through a page would scale as t � p � k.

An alternative baseline to gauge the popularity bias of search
would be the case of first-generation search engines. Because these
engines did not use the topology of the web graph in their ranking
algorithms, we would not expect the traffic generated by them to
depend on in-degree. We focus on the former surfing baseline,
which has been used as a reference in the literature (16) because it
corresponds to the process modeled by Google’s PageRank. The
linear relationship between in-degree and traffic predicted by the
surfing model is our benchmark against which the signature of
search bias is characterized. As we show below, the intuitive
googlearchy argument leads to a search model that predicts a
superlinear relationship between t and k.

Modeling the Vicious Cycle. When navigation is mediated by search
engines, to estimate the traffic directed toward a page, one must
consider how search engines retrieve and rank results and how
people use these results. According to Cho and Roy’s approach
(16), we need to find two relationships: (i) how the PageRank
translates into the rank of a result page, and (ii) how the rank of a
hit translates into the probability that the user clicks on the
corresponding link, thus visiting the page.

The first step is to determine the scaling relationship between
PageRank (and equivalently in-degree as discussed above) and
rank. Search engines employ many factors to rank pages. Such
factors are typically query-dependent: whether the query terms
appear in the title or body of a page, for example. Search engines
also use global (query-independent) importance measures, such
as PageRank, to judge the value of search hits. Given that the
true ranking algorithms used by commercial search engines are
not public and that, for the sake of a simple model of global web
traffic, we make the simplifying assumption that PageRank
determines the average rank r of each page within search results,
the page with the largest p has average rank r � 1 and so on, in
decreasing order of p.

To derive the relationship between p and r, we fitted the empirical
curve of rank vs. PageRank obtained from a large WebBase crawl.
We obtained a power law over three orders of magnitude:

r�p� � p��, [1]

where � � 1.1 (Fig. 1A). Cho and Roy (16) report a somewhat
different value for the exponent � of 3�2. It is possible to obtain
a larger exponent by fitting the tail of the curve, corresponding
to high PageRank; however, we focused on the great majority of
pages. To check this discrepancy, we used an alternative ap-
proach to study the relationship between r and p, illustrated in
Fig. 1B, which confirmed our estimate of � � 1.1.

The second step is to approximate the traffic to a given page by
the probability that, when the page is returned by a search engine,
the user will click on its link. We expect the traffic t to a page to be
a decreasing function of its rank r. Lempel and Moran (24) reported
a nonlinear relationship confirmed by our analysis through query
logs from AltaVista, as shown in Fig. 2. The data can be fitted quite
well by a simple power-law relationship between the probability t
that a user clicks on a hit and the rank r of the hit:

t � r��, [2]

with exponent � � 1.6. The fit exponent obtained by Cho and
Roy (16) was 3�2, which is close to our estimate. The decrease

of t with the rank r of the hit clearly indicates that users focus with
larger probability on the top results.

We are now ready to express the traffic as a function of page
in-degree k by using a general scaling relationship, t � k�. The
baseline (pure surfing model) is � � 1; in the searching model, we
take advantage of the relationships between t and r, between r and
p, and between p and k to obtain

t � r�� � �p����� � p�� � k��. [3]

Therefore, � � ���, ranging between � � 1.8 (according to our
measures � � 1.6, � � 1.1) and 2.25 (according to ref. 16).

In all cases, the searching model leads to a value � � 1. This
superlinear behavior is a quantitative prediction that corresponds to
the presumed bias of search engines toward already popular sites.
In this view, pages highly ranked by search engines are more likely
to be discovered (as compared to pure surfing) and consequently
linked-to by other pages, as shown empirically in ref. 16, which, in
turn, would further increase their PageRank and raise the average

Fig. 1. Relationship between rank and PageRank. (A) Empirical relationship.
The logarithm–logarithm plot shows a power law r � p�1.1, with an exponen-
tial cutoff. (B) Distribution of PageRank p. The logarithm–logarithm plot
shows a power law Pr(p) � p�2.1. The rank r is essentially the number of
measures greater than p, i.e., r � N �p

pmax Pr(x)dx, where pmax is the largest
measure gathered and N is the number of measures. In general, when the
variable p is distributed according to a power law with exponent �� and
neglecting large N corrections, one obtains r(p) � p1��; therefore � � � � 1 �
1.1. Both plots are based on data from a WebBase 2003 crawl (http:��
dbpubs.stanford.edu:8091��testbed�doc2�WebBase).

Fig. 2. Scaling relationship between click probability t and hit rank r. The
logarithm–logarithm plot obtained with logarithmic binning of rank shows a
power law with exponent � � 1.6 	 0.1 (data from a sample of 7 million
queries submitted to AltaVista between September 28, 2001 and October 3,
2001).
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rank of those pages. Popular pages become more and more popular,
whereas new pages are unlikely to be discovered. Such a vicious
cycle would accelerate the rich-get-richer dynamics already ob-
served in the Web’s network structure (2, 6, 7). This presumed
popularity bias or entrenchment effect has been recently brought to
the attention of the technical web community (16, 20, 22), and
methods to counteract it have been proposed (21, 22). There are
also notable social and political implications to such a googlearchy
(18, 19, **).

Empirical Data. To our knowledge, no prior empirical evidence
exists to quantitatively support the vicious cycle theory by cross-
correlating traffic with PageRank or in-degree data. Here we
outline our effort to fill this void. Given a web page, its in-degree
is the number of links pointing to it, which can be estimated by using
search services offered by Google or Yahoo. Traffic is the fraction
of all user clicks in some period that lead to each page; this quantity,
also known as view popularity (21), is difficult to collect because
search engines and Internet service providers protect their data for
privacy and business reasons. To overcome this obstacle, we turned
to the Alexa Traffic Rankings service, which monitors the sites
viewed by users of its toolbar. Although our sources provide the best
publicly available data for in-degree and traffic, there are some
caveats on their use and reliability that are discussed in Materials
and Methods. We used the Yahoo and Alexa services to estimate
in-degree and traffic for a total of 28,164 web pages. Of these pages,
26,124 were randomly selected by using Yahoo’s random page
service. The remaining 2,040 pages were selected among the
sites with the highest traffic. The resulting density plot is shown in
Fig. 3A.

To derive a meaningful scaling relationship given the broad
fluctuations in the data, we average traffic along logarithmic bins
for in-degree, as shown in Fig. 3B. Surprisingly, both the searching
and surfing models fail to match the observed scaling, which is not
well modeled by a power law. Contrary to our expectation, the
scaling relationship is sublinear; the traffic pattern is more egali-
tarian than what one would predict based on the simple search
model described above or compared with the baseline model
without search. Less traffic than expected is directed to highly
linked sites. This finding suggests that some other factor must be at
play in the behavior of web users, counteracting the skewed
distribution of links in the Web and directing some traffic toward
sites that users would never visit otherwise. Here, we revise the
search model by taking into account the fact that users submit
specific queries about their interests. This crucial element was
neglected in the simple search model and offers a compelling
interpretation of the empirical data.

Incorporating User Interests into the Search Model. In the previous
theoretical estimate of traffic as driven by search engines, we
considered the global rank of a page, computed across all pages
indexed by the search engine. However, any given query typically
returns only a small number of pages compared with the total
number indexed by the search engine. The size of the “hit” set and
the nature of the query introduce a significant bias in the sampling
process. If only a small fraction of pages are returned in response
to a query, their rank within the set is not representative of their
global rank as induced, say, by PageRank.

To illustrate the effect of hit set size, let us assume that query
result lists derive from a Bernoulli process such that the number of
hits relevant to each query is on average h�N, where h is the relative
hit set size. In Materials and Methods, we show that this assumption
leads to an alteration in the relationship between traffic and
in-degree. Fig. 4A shows how the click probability changes with h.
The result, t � k�, holds only in the limit case h3l. Because the size
of the hit sets is not fixed but depends on user queries, we measured
the distribution of hit set sizes for actual user queries as shown in
Fig. 4B, yielding Pr(h) � h��, with � � 1.1 over seven orders of

magnitude. The exponential cutoff in the distribution of h is due to
the maximum size of actual hit lists corresponding to non-noise
terms and can be disregarded for our analysis (see the supporting
information).

The traffic behavior is therefore a convolution of the different
curves reported in Fig. 4A, weighted by Pr(h). The final relationship
between traffic and degree can thus be obtained by numerical
techniques. Strikingly, the resulting behavior reproduces the em-
pirical data over four orders of magnitude, including the peculiar
saturation observed for high-traffic sites (Fig. 4C). In Materials and
Methods, we discuss the simulation and fitting techniques, as well as
the trend in the low in-degree portion of the empirical curve.

The search model that accounts for user queries predicts a traffic
trend for pages with increasing in-degree that is noticeably slower
than the predictions of both the surfing model (baseline) and the
naive searching model. The new element in the model is the simple
fact that user interests tend to be specific, providing low-degree
pages with increased visibility when they match user queries. In
other words, the combination of search engines, semantic attributes
of queries, and users’ own behavior provides us with a compelling

Fig. 3. Relationship between traffic and in-degree. (A) Density plot of traffic
vs. in-degree for a sample of 28,164 web sites. Colors represent the fraction of
sites in each log-size bin on a logarithmic color scale. A few sites with highest
in-degree and�or traffic are highlighted. The source of in-degree data is
Yahoo; using Google yields the same trend. Traffic is measured as the fraction
of all page views in a 3-month period, according to Alexa data. The density
plot highlights broad fluctuations in the data. (B) Relationship between
average traffic and in-degree obtained with logarithmic binning of in-degree.
Error bars correspond to 	1 SE. The power-law predictions of the surfing and
searching models discussed in the text also are shown, together with a guide
to the eye for the portion of the empirical traffic curve that can be fitted by
a power law t � k� (� � 0.8).
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interpretation of how the rich-get-richer dynamics of the Web is
mitigated by the search process.

Of course, actual web traffic is the result of both surfing and
searching behaviors. Users rely on search engines heavily but
also navigate from page to page through static links as they
explore the neighborhoods of pages returned in response to
search queries (15). It would be easy to model a mix of our
revised searching model with the random surfing behavior.
The resulting mixture model would yield a prediction some-
where between the linear scaling t � k of the surfing model
(compare with Fig. 3B) and the sublinear scaling of our
searching model (compare with Fig. 4C). The final curve would
still be sublinear, in agreement with the empirical traffic data.
Users may also end up on a page by other mechanisms, such
as bookmarks or email referrals. The simple models presented
here neglect these mechanisms.

Conclusions
Our heavy reliance on search engines as a means of coping with
the Web’s size and growth does affect how we discover, visit, and
link pages. Yet, despite the rich-get-richer dynamics implicit in
the link analysis used to rank results, the use of search engines
appears to mitigate the average traffic attraction of high-degree
pages. The sublinear scaling relationship between traffic and
page in-degree, revealed by our empirical measurements, is
consistent with the observation that search engines lead users to
visit �20% more pages than surfing alone (15). Such an effect
may be understood within our theoretical model of search that
considers the users’ clicking behavior, the ranking algorithms
used by search engines, and the long-tailed distribution observed
for the number of hits matching user queries.

There are other possible interpretations for the sublinear scaling
observed in the data. For instance, the quality of search engines
might decrease the motivation for linking to already popular sites,
whereas people may feel more motivated to link pages that do not
appear among the top hits returned by search engines. Our search
model, however, presents a very compelling explanation of the data
because it predicts the traffic trend so accurately using a minimal
account of query content and making strong simplifying assump-
tions, such as the use of PageRank as the sole ranking factor.

Our result has relevant conceptual and practical consequences;
it suggests that, contrary to intuition and prior hypotheses, the use
of search engines contributes to a more level playing field in which
new sites have a greater chance of being discovered and thus of
acquiring links and popularity, as long as they are about specific
topics that match the interests of users as expressed through their
search queries.

Such a finding is particularly relevant for the design of realistic
models for web growth. The connection between the popularity of
a page and its acquisition of new links has led to the well known
rich-get-richer growth paradigm that explains many of the observed
topological features of the Web. The present findings, however,
show that several nonlinear mechanisms involving search engine
algorithms and user behavior regulate the popularity of pages. A
theoretical framework must consider more of the various behav-
ioral and semantic issues that shape the evolution of the Web. Our
current theoretical effort is to study how such a framework may
yield coherent models that still agree with the Web’s observed
topological properties (25).

Finally, the present results provide a quantitative estimate of, and
prediction for, the popularity and traffic generated by web pages.
This estimate promises to become an important tool to be exploited
in the optimization of marketing campaigns, the generation of
traffic forecasts, and the design of future search engines.

Materials and Methods
Relationship Between In-Degree and PageRank. A mean field analysis
has shown that in a directed network there is a precise relationship
between a given in-degree k and the average PageRank p of all of
the nodes with in-degree k (26). In the case of the web graph, owing
to weak degree–degree correlations, this relationship is well ap-
proximated by a simple proportionality. To illustrate such behavior,
we carried out a numerical analysis of PageRank on two web crawls
performed in 2001 and 2003 by the WebBase collaboration at
Stanford. The graphs are quite large: The former crawl has
80,571,247 pages and 752,527,660 links, and the latter crawl has
49,296,313 pages and 1,185,396,953 links. In our calculations of
PageRank, we used a damping factor of 0.85, as in the original
version of the algorithm (23) and many successive studies.

In Fig. 5, we averaged the PageRank values over logarithmic bins
of in-degree. The data points mostly fall on a power-law curve for
both samples, with p increasing with k. The estimated exponents of
the power-law fits for the two curves are 1.1 	 0.1 (2001) and 0.9 	
0.1 (2003). The two estimates are compatible with the linear

Fig. 4. Relationship between traffic, in-degree, and hit set size. (A) Scaling
relationship between traffic and in-degree when each page has a fixed
probability h of being returned in response to a query. The curves (not
normalized for visualization purposes) are obtained by simulating the process
t[r(k), h] (see Materials and Methods). (B) Distribution of relative hit set size h
for 200,000 actual user queries from AltaVista logs. The hit set size data were
obtained from Google. Frequencies are normalized by logarithmic bin size.
The logarithm–logarithm plot shows a power law with an exponential cutoff.
(C) Scaling between traffic and in-degree obtained by simulating 4.5 million
queries with a realistic distribution of hit set size. Empirical data are as shown
in Fig. 3B. The trend in the low-k region can also be recovered (see Materials
and Methods).
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prediction between PageRank and in-degree used in our model.
However, PageRank values may fluctuate considerably among
pages with equal in-degree, consistent with the broad range of
correlation coefficients between k and p reported in the literature
(26–28).

For large values of in-degree, slight deviations from the linear
prediction are observed in the crawl data of Fig. 5. Such deviations
do not play a role in the relationship between in-degree and traffic
because of the saturation of traffic in that region observed in the
empirical data (Fig. 4C). If traffic is approximately independent of
in-degree in this region, it is also independent of PageRank
irrespective of the exact relationship between k and p.

Measuring In-Degree and Traffic. To ensure the robustness of our
analysis, we collected our in-degree data twice at a distance of 2
months. Although there were differences in the numbers (for
example, Yahoo increased the size of its index significantly in the
meantime), there were no differences in the scaling relationships.
We also collected in-degree data with Google, again yielding
different numbers but the same trend. The in-degree measures
exclude links from the same site. For example, to find the in-degree
for http:��informatics.indiana.edu, we would submit ‘‘link:http:��
informatics.indiana.edu�-site:informatics.indiana.edu’’ as the
query. Note that the in-degree data provided by search engines are
only an estimate of the true number. First, a search engine can only
know of links from pages that it has crawled and indexed. Second,
for performance reasons, the algorithms counting in-links use
various unpublished approximations based on sampling.

Alexa collects and aggregates historical traffic data from millions
of Alexa Toolbar users. Although this is the only public source of
web traffic data, it is generated by a sample of the web population
that may be biased. Traffic is measured as page views per million
in a 3-month period. Multiple page views of the same page made
by the same user on the same day are counted only once. Our
measure of traffic t corresponds to Alexa’s count, divided by 106 to
express the fraction of all of the page views by toolbar users that go
to a particular site. Because traffic data are only available for web
sites rather than single pages, we correlate the traffic of a site with
the in-degree of its main page. For example, suppose that we want
the traffic for http:��informatics.indiana.edu. Alexa reports the
3-month average traffic of the domain indiana.edu as 9.1 page views
per million. Furthermore, Alexa reports that 2% of the page views
in this domain go to the informatics.indiana.edu subdomain. Thus,
we reach the estimate of 0.182 page views per million, t � 1.82 

10�7. The estimate of traffic by domains rather than pages intro-
duces a systematic bias by which page traffic is overestimated.
However, there is no reason to suspect that such a bias is correlated
with degree. Therefore, it should be of no consequence for the
exponent describing the relationship between degree and traffic.

Simulation of Search-Driven Web Traffic. When a user submits a
query to a search engine, the latter will select all pages deemed

relevant from its index and display the corresponding links ranked
according to a combination of query-dependent factors, such as the
similarity between the terms in the query and those in the page, and
query-independent prestige factors, such as PageRank. Here we
focus on PageRank as the main global ranking factor, assuming that
query-dependent factors are averaged out across queries. The
number of hit results depends on the query, and it is in general much
smaller than the total number of pages indexed by the search
engine.

Let us start from the relationship between click probability and
rank in Eq. 2. If all N pages in the index were listed in each query,
as implicitly assumed in ref. 16, the probability for the page with the
smallest PageRank to be clicked would be N� (� � 1.6 in our study)
times smaller than the probability to click on the page with the
largest PageRank. If instead, both pages ranked first and Nth
appear among the n hits of a realistic query (with n �� N), they
would still occupy the first and last positions of the hit list, but the
ratio of their click probabilities would be much smaller than before,
i.e., n�. This effect leads to a redistribution of the clicking proba-
bility in favor of lower-ranked pages, which are then visited much
more often than one would expect at first glance. To quantify this
effect, we must first distinguish between the global rank induced by
PageRank across all web pages and the query-dependent rank
among the hits returned by the search engine in response to a
particular query. Let us rank all N pages in decreasing order of
PageRank, such that the global rank is R � 1 for the page with the
largest PageRank, followed by R � 2 and so on.

Let us assume for the moment that all query result lists derive
from a Bernoulli process with success probability h (i.e., the number
of hits relevant to each query is on average h�N). The assumption
that each page can appear in the hit list with the same probability
h is in general not true, because there are pages that are more likely
to be relevant than others, depending on their size, intrinsic appeal,
and so on. If one introduces a fitness parameter to modulate the
probability for a page to be relevant with respect to a generic query,
the results would be identical as long as the fitness is not correlated
with the PageRank of the page. In what follows, we stick to the
simple assumption of equiprobability.

The probability Pr(R, r, N, n, h) that the page with global rank R
has rank r within a list of n hits is

Pr�R , r , N , n , h� � hn�1 � h�N�n� R � 1
r � 1 � �N � R

n � r � . [4]

The probability for the Rth page to be clicked is then

t�R, N, h� � �
n�1

N �
r�1

n r��hn�1 � h�N�n

�m�1
n m��

�R � 1
r � 1 ��N � R

n � r �, [5]

where we summed over the possible ranks r of R in the hit list (r �
1 . . . n) and over all possible hit set sizes (n � 1 . . . N). The sum
in the denominator ensures the proper normalization of the click
probability within the hit list.

Fig. 6. Scaling of t(R, N, h)�h with the variable R�h. The three curves refer to
a sample of N � 105 pages.

Fig. 5. PageRank as a function of in-degree for two samples of the Web
taken in 2001 and 2003.
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From Eq. 5, we can see that if h � 1, which corresponds to a
list with all N pages, one recovers Eq. 2, as expected. For h � 1,
however, it is not possible to derive a close expression for t(R, N,
h), so we performed Monte Carlo simulations of the process
leading to Eq. 5.

In each simulation, we produce a large number of hit lists,
where every list is formed by picking each page of the sample
with probability h. At the beginning of the simulation, we
initialize all entries of the array t(R, N, h) � 0. Once a hit list is
completed, we add to the entries of t(R, N, h), corresponding to
the pages of the hit list, the click probability as given by Eq. 2
(with the proper normalization). With this Monte Carlo method,
we simulated systems with up to N � 106 items. To eliminate
fluctuations, we averaged the click probability in logarithmic
bins, as already done for the experimental data.

We found that the function t(R, N, h) obeys a simple scaling law:

t�R, N, h� � hF�Rh�A�N�, [6]

where F(R�h) has the following form:

F�Rh� � 	const if h � Rh � 1
�Rh��� if Rh 	 1. [7]

An immediate implication of Eq. 6 is that, if one plots t(R, N,
h)�h as a function of R�h for N fixed, one obtains the same curve
F(R�h)A(N) independently of the value of h (Fig. 6).

The decreasing part of the curve, t(R, N, h), for R�h � 1, i.e.,
R � 1�h, is the same as in the case when h � 1 (Eq. 2), which
means that the finite size of the hit list affects only the top-ranked
1�h pages. The effect is thus strongest when the fraction h is
small, i.e., for specific queries that return few hits. The striking
feature of Eq. 7 is the plateau for all pages between the first and
the 1�hth, implying that the difference in the values of PageRank
among the top 1�h pages does not produce a difference in the
probability of clicking on those pages. For h � 1�N, which would
correspond to lists containing on average a single hit, each of the
N pages would have the same probability of being clicked,
regardless of their PageRank.

So far, we assumed that the number of query results is drawn
from a binomial distribution with a mean of h�N hits. On the other
hand, we know that real queries generate a broad range of possible
hit set sizes, going from lists with only a single result to lists
containing tens of millions of results. If the size of the hit list is

distributed according to some function Pr(h), one would need to
convolve t(R, N, h) with Pr(h) to get the corresponding click
probability:

t�R, N� �

hm

hM

Pr�h� t�R , N , h�dh , [8]

where hm and hM are the minimal and maximal fraction of pages in
a list, respectively. We stress that if there is a maximal hit list size
hM � 1, the click probability t(R, N, h) will be the same for the first
1�hM pages, independent of the distribution function Pr(h).

The functional form of the real hit list size distribution Pr(h)
(compare with Fig. 4B) is discussed in the supporting information.
As to the full shape of the curve t(R, N) for the Web, we performed
a simulation for a set of N � 106 pages. We used hm � 1�N because
there are hit lists with a few or even a single result. The size of our
sample allowed us to predict the trend between traffic and in-degree
over almost six orders of magnitude for k. To fit the empirical data,
we note that the theoretical curves obey a simple scaling relation-
ship. It is indeed possible to prove that t(R, N) is a function of the
‘‘normalized’’ rank R�N (and of N) and not of the absolute rank R.
As a consequence, by properly shifting curves obtained for different
N values along logarithmic x and y axes, it is possible to make the
curves overlap (see the supporting information), allowing us to
safely extrapolate to much larger N and to lay the curve derived by
our simulation on the empirical data (as we did in Fig. 4C).
However, because of the difficulty to simulate systems with as many
pages as the real Web (N � 1010), we could not extend the
prediction to the low in-degree portion of the empirical curve.
Wanting to extend the simulation beyond a million nodes, one
would have to take into account that the proportionality assump-
tion between p and k is not valid for k � 100, as shown in Fig. 5. By
considering the flattening of PageRank in this region, one could
recover in our simulation the traffic trend for small degree in
Fig. 4C.
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