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Drug–target network
Muhammed A Yıldırım1,2,3, Kwang-Il Goh1,4,5, Michael E Cusick1,2, Albert-László Barabási1,4,6 & Marc Vidal1,2

The global set of relationships between protein targets 
of all drugs and all disease-gene products in the human 
protein–protein interaction or ‘interactome’ network remains 
uncharacterized. We built a bipartite graph composed of US 
Food and Drug Administration–approved drugs and proteins 
linked by drug–target binary associations. The resulting 
network connects most drugs into a highly interlinked giant 
component, with strong local clustering of drugs of similar types 
according to Anatomical Therapeutic Chemical classification. 
Topological analyses of this network quantitatively showed an 
overabundance of ‘follow-on’ drugs, that is, drugs that target 
already targeted proteins. By including drugs currently under 
investigation, we identified a trend toward more functionally 
diverse targets improving polypharmacology. To analyze the 
relationships between drug targets and disease-gene products, 
we measured the shortest distance between both sets of proteins 
in current models of the human interactome network. Significant 
differences in distance were found between etiological and 
palliative drugs. A recent trend toward more rational drug design 
was observed.

The pharmaceutical industry has historically relied upon particular fam-
ilies of ‘druggable’ proteins against which chemists attempt to develop 
compounds with desired actions1–4. Most drugs act by binding to spe-
cific proteins, thereby changing their biochemical and/or biophysical 
activities, with multiple consequences on various functions. Yet most 
US Food and Drug Administration (FDA)-approved drugs currently 
used by clinicians were developed without knowledge of the molecular 
mechanisms responsible for their indicated diseases5.

Proteins rarely function in isolation in and outside the cell; rather, 
proteins operate as part of highly interconnected cellular networks 
referred to as interactome networks6–9. Our goal here is to understand 
drug targets in the context of cellular and disease networks. Molecular 
and genetic studies of disease over recent decades have produced an 
impressive list of gene–disease associations10–12. We combined the tools 

of network biology with systematic information about drugs and their 
targets to (i) analyze properties of drug-target networks as part of cel-
lular networks, (ii) assess retrospectively and prospectively network-
based relationships between drugs and their targets, quantifying ongoing 
trends and shifts in drug discovery, and (iii) quantify interrelationships 
between drug targets and disease-gene products.

RESULTS
Lists of drugs and corresponding targets were obtained from the 
DrugBank database13. As of March 29, 2006, DrugBank contained 4,252 
drug entries, including 1,178 FDA-approved drugs (1,065 small mol-
ecules and 113 proteins/peptides) and 3,074 drugs under investigation 
(“experimental drugs”)(Fig. 1). The FDA-approved drugs target 394 
human proteins in total. Most drugs target only a few proteins, but some 
have many targets (Fig. 1a). The average number of target proteins per 
drug is 1.8. Likewise, many proteins are targeted by more than one drug 
(Fig. 1b). An analysis of the chemical similarity between drugs targeting 
these proteins reveals that most of the drugs have a distinct chemical 
structure (Supplementary Notes and Supplementary Fig. 1 online).

Generating a drug–target network
First we used all known FDA-approved drugs and their targets to gener-
ate a bipartite graph of drug–protein interactions in which a drug and a 
protein are connected to each other if the protein is a known target of the 
drug, giving rise to a ‘drug–target network’ (DT network) (Fig. 2). From 
the bipartite DT network graph, we generated two biologically relevant 
network projections. In the ‘drug network’, nodes represent drugs, and 
two drugs are connected to each other if they share at least one target 
protein (Supplementary Fig. 2 online). In the complementary ‘target-
protein network’ (TP network), nodes are proteins, and two proteins 
are connected if they are both targeted by at least one common drug 
(Fig. 3a). By itself, network visualization of drug–protein associations 
provides an important survey of the current status of drug discovery. 
We next used quantitative tools to discern global trends encoded in 
these maps.

If most drugs specifically targeted a single protein, then the drug net-
work would consist of isolated nodes with few or no edges between them. 
Instead, the drug network displays many connections between different 
drugs and drug classes. Out of 890 approved drugs with known human 
protein targets, 788 have at least one link to other drugs, that is, they 
share targets with other drugs. There are 476 drugs in the giant compo-
nent, the largest connected component of the network (Supplementary 
Fig. 2). We colored drug nodes according to the Anatomical Therapeutic 
Chemical (ATC) classification. Although the drug-network layout was 
generated independently of any knowledge about drug classes, the 
resulting network is naturally and visibly clustered by major therapeu-
tic classes. The most obvious example of clustering is a large tightly 
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interconnected neurological drug cluster (Fig. 2). In contrast, anti-
neoplastic drugs and drugs for metabolic diseases do not form a single 
distinct cluster. These classes are underrepresented in the giant compo-
nent and overrepresented in the smaller components (quantified in the 
Supplementary Notes), representing the least-connected drug classes 
relative to their class sizes.

The TP network provides a complementary, protein-centered view 
of pharmacological space14. In the TP network, 305 out of 394 target 
proteins are connected to other target proteins (Fig. 3a). Drugs with 
multiple targets are responsible for the high interconnectedness of the 
TP network. Although such promiscuous drugs were once thought to 
be undesirable in favor of more target-specific drugs, the recent success 
of anticancer drugs like imatinib (Gleevec) and sunitinib (Sutent) and 
of nonselective drugs for mood disorders and schizophrenia15 seems to 
be shifting the industry toward such polypharmacology16,17.

Historically the drug industry has relied upon a small number of tar-
gets. Topological features of the drug network and the TP network, such 
as giant component size, degree distribution and clustering coefficient 
(Supplementary Figs. 3,4 online), quantitatively confirm this bias. Giant 
component size is the largest connected component of a network and 
measures local functional clustering when compared to other networks 
of similar topological properties10,18. We find that the actual size of the 
giant component of the drug network (476) is significantly smaller than 

the average giant component of 104 randomized networks generated by 
randomly shuffling the associations between drugs and proteins while 
keeping the number of links per drug and target protein unchanged (788 
± 9; empirical P < 10−4) (Supplementary Fig. 3a). Similarly, the size of 
the giant component of the TP network (122) is significantly smaller 
than the average size for randomized target-protein networks (302 ± 8 
gene products; empirical P < 10−4) (Supplementary Fig. 3b). This result 
suggests that the polypharmacology acting on the target proteins is par-
ticularly enriched for highly targeted proteins. Higher-degree nodes in 
the drug network and TP network are preferentially connected to each 
other rather than being distributed homogeneously throughout the net-
work, leading to a much smaller giant component size than expected18. 
Therefore, the DT network represents an intermediate structure between 
a completely random network with a very large giant component and a 
functionally fully segregated network broken into isolated clusters. The 
pharmaceutical industry shows a tendency to target already validated 
target proteins, causing an abundance of ‘follow-on’ drugs, and our 
analysis confirms this tendency. 

The DT network is ever expanding with the continuous introduc-
tion of new FDA-approved drugs. Between 1982 and 2004, new drugs 
targeted on average 27.7 proteins each year, with 6.3 new therapeutic 
target proteins (Fig. 1c). If the target(s) of a novel drug correspond(s) 
to previously untargeted proteins, this drug would form a disconnected 
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Figure 1  Distribution of drugs and drug targets. (a) Distribution of drugs with respect to number of their targets. The FDA-approved drugs target 394 human 
proteins in total. Most drugs target only a few proteins, but some have many targets; for example, propiomazine (Largon) and promazine (Sparine) have 14 
targets each, and olanzapine (Zyprexa, Zydis) and ziprasidone (Geodon) have 11 targets each. (b) Distribution of target proteins with respect to number 
of times the target protein is targeted by a distinct drug. The most-targeted proteins are the histamine H1 receptor (HRH1) (targeted by 51 drugs), the 
muscarinic 1 cholinergic receptor (CHRM1) (48 drugs), the α1A adrenergic receptor (ADRA1A) (42 drugs) and the dopamine receptor D2 (DRD2) (40 drugs). 
(c) Number of distinct proteins targeted each year. ‘New proteins’ are the newly introduced proteins. (d) New drugs introduced each year. ‘Jumping drugs’ are 
the drugs with totally new sets of target proteins, whereas ‘Crawling drugs’ target at least one already targeted protein. The FDA approved 19.5 new chemical 
entities on average each year in the last 25 years, of which 6.3 act on novel targets.

ANALYS IS
©

20
07

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy



NATURE BIOTECHNOLOGY  VOLUME 25   NUMBER 10   OCTOBER 2007 1121

component rather than increase the size of the already existing compo-
nents of the DT network. Such drugs, which act discontinuously in the 
network, are referred to as ‘jumping’ drugs19. If one or more target(s) 
of a new drug is a known drug target, then this drug connects to one of 
the already connected components in the DT network, as if it were con-
tinuously ‘crawling’ in the DT network. In the same 1982–2004 period, 
19.6 drugs were approved per year, but only 17% of these were jumping 
drugs (Fig. 1d). Targets of the jumping drugs constitute 67% of the 
newly introduced targets during this period. Hence, new drugs tend to 
bind known target proteins, attaching to islands of highly interconnected 
known targets in the network.

Experimental drugs
DrugBank also contains information about experimental drugs (drugs 
in the pipeline or not yet approved by the FDA). Although these experi-
mental drugs have some biases, statistically significant trends in drug 
discovery might still be observed. There are currently more than 3,000 
experimental drugs, 808 of which have at least one identified human 
protein target. The total number of drug targets increases to 1,011 
when adding experimental drug targets. Inclusion of experimental 
drugs increases the size of the TP network giant component to 725, 
still significantly smaller than the average size of the giant component 

of 104 randomly generated graphs of identical node and degree distri-
bution (782 ± 11) (Supplementary Fig. 3d). In contrast, the network 
formed by protein targets that are targeted by experimental drugs 
has a giant component size of 596, which is significantly larger than 
randomized networks (551 ± 10; P < 10−4) (Supplementary Fig. 3f). 
These results indicate a trend toward more diversified target proteins. 
Experimental drugs show an increased tendency to be more promiscu-
ous and introduce more associations between already existing proteins 
in the network, a phenomenon validated by the changes of the degree 
distribution and clustering coefficient following the addition of these 
drugs (Supplementary Fig. 4c–e).

Inclusion of experimental drugs changes the cellular component pro-
file of target proteins. About 60% of approved drug targets are mem-
brane proteins, down to ~40% when experimental targets are added 
(Fig. 3b). We also looked at the targets of drugs approved in the last 10 
years (1996–2006). Despite the increase in diversity of experimental 
drug targets, targets of recently FDA-approved drugs are still mostly 
membrane proteins. Membrane proteins are easier to target, not least 
because getting drugs across membranes is challenging. Whereas exper-
imental drugs clearly tend to target proteins localized in other cellular 
compartments, these efforts have not yet yielded significant changes in 
the cellular compartment distribution of approved drug targets.

Metabolism

Blood

Cardiovascular

Dermatological

Genito-urinary

Hormones

Anti-infectives

Antineoplastics

Musculoskeletal

Nervous system

Antiparasitic

Respiratory

Sensory organs

Various

Membrane

Cytoplasm

Organelles

Nucleus

Exterior

Unknown

HRH1

ADRA1A

DRD2

DRD1

CHRM1

CHRM2

OPRM1

GABRA1

BZRP
COX2

COX1

SLC6A2

SLC6A4

SCN5A

ESR1PGR

ADRB1

ADRB2
AR

HTR2A

ADRA2A

Figure 2  Drug–target network (DT network). The DT network is generated by using the known associations between FDA-approved drugs and their target 
proteins. Circles and rectangles correspond to drugs and target proteins, respectively. A link is placed between a drug node and a target node if the protein 
is a known target of that drug. The area of the drug (protein) node is proportional to the number of targets that the drug has (the number of drugs targeting 
the protein). Color codes are given in the legend. Drug nodes (circles) are colored according to their Anatomical Therapeutic Chemical Classification, and the 
target proteins (rectangular boxes) are colored according to their cellular component obtained from the Gene Ontology database.
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Drug targets and essentiality
To examine the global relationships between drug-target proteins in 
the human interactome network, we overlaid the TP network onto 
a network of physical protein-protein interactions (PPIs) derived 
from high-quality systematic interactome mapping20,21 and from lit-
erature curation20. There are 262 drug-target proteins present in the 
PPI network. The drug-target proteins have 42% more interacting  

proteins (degree) on average than any protein in the PPI network (P 
< 10−6, Wilcoxon rank-sum test) (Fig. 4a and Supplementary Fig. 
5 online). In PPI networks, the degree of a protein correlates with 
the essentiality of the protein8. To investigate the role of drug-target 
protein essentiality, we compared the degree of drug targets to the 
predicted human essential proteins, that is, proteins whose ortholo-
gous mouse protein is encoded by a gene found essential in knockout 
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Figure 3  Target-protein network (TP network) and cellular component profiles. (a) In the TP network, each node is a protein, two proteins being connected 
if they are targeted by the same drug. The size of each node is proportional to the number of drugs targeting the gene. The nodes are colored according 
to their cellular component obtained from the Gene Ontology database. The thickness of the edge connecting two nodes is proportional to the number of 
drugs targeting both proteins at once. The TP network can be overlapped with cellular networks generated based on PPIs20,21, transcription factor–promoter 
interactions34–36 and metabolic reactions37 to reveal correlations between targets of the same drug and other cellular functions. (b) Cellular component 
distribution of several classes of drug targets and disease genes.
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experiments22. The average degree of essential proteins was signifi-
cantly higher than the average degree of target proteins (P < 10−2 for 
approved drug targets, P < 10−10 with addition of experimental drug 
targets, Wilcoxon rank-sum test). Although drug-target proteins in 
general have more interactors, they do not necessarily show a trend 
towards greater essentiality (Supplementary Notes examines other 
topological features).

Essential proteins tend to coordinate the activity of diverse bio-
logical processes or ‘modules’23 and so tend to be coexpressed with 
other genes10. To assess coexpression, we used expression data from 
36 different human tissue microarray experiments24. Genes encod-
ing drug-target proteins show less coexpression with other genes 
compared with essential genes (Fig. 4b), indicating that drugs more 
likely act within modules than between modules. We also measured 
the average number of different tissues in which target proteins are 
expressed. The tissue count is lower than the average (Fig. 4c), show-
ing high tissue specificity.

Drug targets and human disease genes
Currently the Online Mendelian Inheritance in Man (OMIM) 
reports on more than 1,284 disorders and 1,777 disease-related 
genes25. A map of disorder–disease gene associations in the OMIM 
Morbid Map was generated recently10 (Fig. 5a and Supplementary 
Fig. 6 online). Similarly to the TP network, a gene-centered human  
disease-gene (HDG) network was generated from the human disease 
map, where two genes are connected if they are associated with the 
same disease. A small portion of validated disease genes (166 genes) 
encodes drug-target proteins, with 71 genes (43%) associated with 
two or more diseases. Drugs approved recently (1996–2006) show 
the same proportion (43%). However, experimental drugs target 210 
proteins in the HDG network, only 54 (26%) of which are involved in 
multiple diseases. The trend in experimental drug discovery seems to 
be toward more specific targets for a disease. Moreover, drug targets 
have significantly lower degrees (P < 10−2 for approved drug targets, 
P < 10−4 with addition of experimental drug targets using Welch’s 
approximate t-test) compared with the network average (Fig. 5b), 
indicating an ongoing shift of drug development toward diseases 
with associated genes that were not prior drug targets.

Drugs do not target diseases equally, but are clearly enriched in 
some regions of the human disease network (Fig. 5a). To quantify 
this effect, we investigated the distribution of drug targets in the 
HDG network. Starting from a node in the network, we looked at 
the ratio of drug targets with respect to the distance from the origin, 
and we took the average of such ratios. If the drug targets were not 
clustered in a region, starting from a drug target would not be dif-
ferent than starting from a random node. Instead, we see a strong 
enrichment in the first and the second neighbors (Fig. 5c), showing 
a bias toward clustering of drug targets in the HDG network.

Cellular network–based relationships between drug targets 
and disease genes
The increase in new drug targets has been relatively slow in the after-
math of the sequencing of the human genome1–4. Effective usage 
of genomic information depends on finding systems connections 
between genetic variation, disease processes and drugs26–29. We 
undertook a systems-based investigation to explore whether drugs, 
their corresponding target proteins and disease-gene products might 
relate to each other at a higher level of organization.

Drugs act by exploiting two principal mechanisms: etiology- 
specific or palliative30. Etiology-specific drugs target the actual cause 
of the disease or etiologically related factors. Palliative drugs target 

proteins that are not the actual cause of the disease, but whose activ-
ity can be perturbed to counteract the symptoms of disease-causing 
proteins.

We examined etiological and palliative drugs in the DT network 
by quantifying the relations between drug targets and disease–gene 
products in the human PPI set. We measured the minimum shortest 
distances between drug targets and disease-gene products implicated 
in their common disorder. The actual mechanism through which a 
drug acts may be unknown, but the shortest distance estimates the 
number of molecular steps between a drug target and the correspond-
ing disease cause. In the combined human interactome network20,21 
there were 922 drug–disease pairs in which at least one drug-target 
protein and one corresponding disease-gene product were present. 
We observed a clear enrichment in the region of lower shortest dis-
tances compared with the randomized gene groups of similar size 
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Figure 4  Drug targets, protein interactions and coexpression. (a) Average 
degree of different classes of proteins in PPI network. (b) Average Pearson 
correlation coefficients of a gene in a particular class with the rest of the 
cellular genes. (c) Average number of tissues in which each class is expressed.
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and pairings (Fig. 6a). Most drugs closely matched the randomized 
distances, suggesting a preponderance of palliative drugs. Most drugs 
found in earlier stages show little selection toward the genetic cause 
of the disease, which is consistent with the fact that they were found 
through traditional chemical screening. A similar analysis can also be 
performed by gene co-expressions (Supplementary Fig. 7).

Given recent increased knowledge about the cause of disease, 
more-rational drug design is expected to become more frequent. To 
test this hypothesis, we repeated the distance analysis above for the 
drugs approved since 1996. There is a significant shift toward higher 
weights in the shorter distances compared with the drugs approved 
before 1996 (P < 10−2, Kolmogorov-Smirnov test), consistent with a 
move toward rational drug design (Fig. 6b).

Drug target to disease gene relations are more direct than random-
ized expectation for the cancer, endocrine, psychiatric and respira-
tory disease classes (Fig. 6c). With the possible exception of cancer, 
many diseases in these classes arise from aberrant activity of drug- 
accessible plasma membrane receptors. Successful drugs for those 
disease classes generally mimic the natural interactors of those recep-
tors15,31. In contrast, distances are longer than randomized expecta-
tion for the developmental, muscular and ophthalmologic disease 
classes. Metabolic disease–gene products show the farthest distance 
to the corresponding drug targets, although this distance might be 
shorter if metabolic networks were used instead.

Cancer is a genetic disease caused by combinations of hyperactive 
oncogenes and defective tumor suppressor genes32. Modern anti-
cancer drugs are rationally designed to alter or suppress aberrant 

oncogene activity. For instance imatinib33 
directly targets tyrosine kinase receptors 
(KIT, BCR-ABL1 and PDGFRB) and thus 
shows a distance of zero in our measure-
ment. Compared with other disease classes, 
we see a greater proportion of drugs with 
distance 1 or 2 in the cancer class (Fig. 6c,d). 
The ‘farthest’ cancer drugs, mainly used in 
advanced cases of cancer, such as abaralix 

(Plenaxis), carmustine (BiCNU) and zoledronate (Zometa, Reclast),  
are palliative drugs prescribed to counteract the debilitating effects 
of radiation therapy or to target all cells of a specific tissue instead 
of targeting cancer cells specifically.

DISCUSSION
We used the concepts of network biology to integrate data from DrugBank 
and OMIM with information on gene expression and PPIs, allowing us 
to address three questions regarding drug development: (i) What are the 
industry trends? (ii) What are the properties of drug targets in the context 
of cellular networks? (iii) How do drug targets relate to disease-gene prod-
ucts? The results indicate that well-known targets remain the preponder-
ant targets of new drugs, with recent slow diversification of protein targets. 
The drug targets occupy certain regions in the interactome networks, and 
their topological signatures are different compared with essential proteins, 
an observation also supported by the expression profile analysis. The novel 
distance metric nicely shows that most drugs are palliative and do not 
directly perturb the protein(s) corresponding to the underlying cause of 
disease. With improving understanding of the genetic basis of disease, 
drug targets are becoming more related to disease-gene products.

Although these data sets are far from complete, our network analyses 
still provide statistically significant characteristics of drug targets. The list 
of drug targets is updated frequently, and we could not compare the drugs 
currently under investigation with drugs that were under investigation 
in the past to predict the reasons behind success or failure of a particular 
drug. The characteristics of drugs under investigation will not be exactly 
the same as those that will be validated. However, using the available 
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targets than average (Supplementary Fig. 6c). 
(b) Average degree of several gene classes in the 
human disease gene HDG network10. (c) Fraction 
of target proteins while applying a breadth-first 
search starting from either a target protein or a 
random protein in the HDG network with respect 
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information about experimental drugs we mapped the current test space 
to the fullest extent possible, finding quantifiable differences in the topo-
logical characteristics of approved drugs and experimental drugs.

Our analysis of the DT network suggests a need to update the single 
drug–single target paradigm, just as single protein–single function rela-
tions are somewhat limited to accurately describe the reality of cellu-
lar processes16. Future attempts at rational drug design will eventually 
take into account the ‘systems’ effects of a drug on the greater network 
upstream and downstream of the actual drug target, which could pave 
the way to more specific drugs for diseases.

METHODS
Drug databases. We downloaded the DrugBank database13 as of March 29, 2006. 
DrugBank combines detailed drug data (chemical, pharmacological and pharma-
ceutical) with comprehensive drug-target information (primary sequence, three-
dimensional structure and pathway involvement). The database contains 4,252 
drug entries including 1,178 FDA-approved small molecule drugs (including 113 
FDA-approved biotech (protein/peptide) drugs) and 3,074 experimental drugs. We 
selected the drugs which are known to have human target proteins. All associations 
between drugs and known target proteins can be found online as Supplementary 
Tables 1 and 2.

OMIM database and diseasome map. We used the OMIM Morbid Map25, which 
contains the most complete known disorder–gene associations, as of December 
21, 2005. We used the same disorder classification as used previously 10. There are 
1,284 disorders, which are grouped into 22 disorder classes, and 1,777 disease genes. 

The Human Diseasome Network was constructed by linking disorders to genes if 
mutations in a gene are implicated in formation of a disorder (see Supplementary 
Notes for a more detailed description).

Topological features of a network. The ‘degree’ of a node is the number of edges 
connecting to the node. The ‘giant component’ is the largest connected component 
of the network. The ‘clustering coefficient’ is defined as Ci = 2n/ki (ki – 1), where n 
denotes the number of direct links connecting the ki nearest neighbors of node i. 
If clustering coefficient of a node equals 1, then the node is at the center of a fully 
interlinked cluster. If the clustering coefficient is close to 0, then the node is part of 
a loosely connected group. The average of Ci over all nodes of a network assesses 
network modularity.

Randomization of drug–target protein associations. To obtain random controls 
for the topological features of DT network, drug network and TP network, we 
first generated a randomized DT network by randomly shuffling the drug–target 
protein associations, while keeping unchanged both the number of proteins that 
a drug targets and the number of drugs that a protein is targeted by. From this 
network, we created the randomized drug network and TP network by project-
ing onto drug and protein spaces, respectively. We generated 104 independent 
randomized samples.

Time-stamping the drugs. We downloaded the Drugs@FDA database as of 
November 21, 2006 (http://www.accessdata.fda.gov/scripts/cder/drugsatfda/).  This 
database includes the history of actions taken for each drug. We used the first date 
that the drug (that is, new chemical entity) was approved as our time stamp. We 
also used the Encyclopedia of Molecular Targets (http://emot.mit.edu/) database 
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to validate our time stamps. Drugs for which we could not identify any approval 
date were excluded from the time-stamp analysis.

Protein–protein interaction data. To obtain detailed human PPI data, we used 
two high-quality systematic yeast two-hybrid experiments20,21 and PPIs obtained 
from literature by manual curation20. The integrated set of PPIs contains 22,052 
non-self-interacting, nonredundant interactions between 7,533 genes. The giant 
component of the PPI network contains 7,279 proteins, of which 253 are targets 
of approved drugs and 1,159 are associated with diseases.

Gene expression microarray data. We used microarray data available for 36 nor-
mal human tissues24. There were 293 approved drug targets and 808 of all drug 
targets that have expression information. A gene is considered to be ‘expressed’ 
if the P value associated with its transcript abundance is less than the threshold 
(P < 0.02)24. Genes that are not expressed in any examined tissue are excluded 
from the analysis.

Mouse phenotype data. To predict the essentiality of a human gene, we used the 
phenotype information of the corresponding mouse ortholog. A human gene 
was defined as ‘essential’ if a knockout of its mouse ortholog confers lethality. 
We obtained the human–mouse orthology and mouse phenotype data from 
Mouse Genome Informatics22 on January 3, 2006. We considered the classes of 
embryonic/prenatal lethality and postnatal lethality as lethal phenotypes, and 
the rest of the phenotypes as nonlethal ones. There were 1,267 mouse-lethal 
human orthologs, of which 77 are targets of approved drugs (~20% of targets of 
approved drugs) and 149 are targets of all drugs (including both approved and 
experimental drugs). 

TP network and disease-gene relations on PPI. We mapped drugs to diseases 
by searching for disease keywords in the ‘indications’ field of drug information 
obtained from the DrugBank database13, first automatically and then by validating 
resulting associations manually (Supplementary Table 3). For each drug–disease 
pair, we calculated the minimum distance on the PPI map between pairs of target 
proteins and disease-associated proteins. To generate randomized controls, we 
selected the same number of proteins from PPIs 104 times randomly to control for 
drug targets. Keeping the disease genes constant, we calculated the statistics from 
minimum distance values for these randomly generated drug–disease pairs.

Statistical tests. All the t-tests were done in Mathematica (Wolfram Research) 
using the HypothesisTests package. Kolmogorov-Smirnov and Wilcoxon rank-
sum tests were done in Matlab (Mathworks) using the “kstest2” and “ranksum” 
commands, respectively. All the error terms in the text and the figures are the 
standard errors.

Note: Supplementary information is available on the Nature Biotechnology website.
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