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Abstract

In our global world, the increasing complexity of social relations and transport infrastructures are key factors in the spread of
epidemics. In recent years, the increasing availability of computer power has enabled both to obtain reliable data allowing one to
quantify the complexity of the networks on which epidemics may propagate and to envision computational tools able to tackle the
analysis of such propagation phenomena. These advances have put in evidence the limits of homogeneous assumptions and simple
spatial diffusion approaches, and stimulated the inclusion of complex features and heterogeneities relevant in the description of
epidemic diffusion. In this paper, we review recent progresses that integrate complex systems and networks analysis with epidemic
modelling and focus on the impact of the various complex features of real systems on the dynamics of epidemic spreading. To cite
this article: V. Colizza et al., C. R. Biologies 330 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Réalité complexe et modèles en épidémiologie. Dans notre monde globalisé, la complexité sans cesse accrue des relations
sociales et des infrastructures de transport sont des facteurs-clés dans la propagation des épidémies. Au cours des dernières années,
la puissance toujours croissante des ordinateurs a rendu possible à la fois d’obtenir des données fiables, permettant de quantifier la
complexité des réseaux au travers desquels l’épidémies peut se propager, et d’envisager des outils calculatoires capables d’analyser
de tels phénomènes. Ces avancées ont mis en évidence les limites des hypothèses homogènes et des approches simples de diffusion
spatiale, et ont stimulé l’inclusion de caractéristiques complexes et d’hétérogénéités pertinentes pour la description de la diffusion
des épidémies. Dans cet article, nous passons en revue les récents progrès qui intègrent les systèmes complexes et l’analyse des
réseaux à la modélisation des épidémies, et nous nous intéressons spécialement à l’impact de diverses caractéristiques complexes
des systèmes réels sur la dynamique de la propagation des épidémies. Pour citer cet article : V. Colizza et al., C. R. Biologies 330
(2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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Version française abrégée

Comprendre et prédire la propagation d’une épidé-
mie dépend de manière cruciale de notre capacité à
modéliser les mouvements et interactions des individus
dans des systèmes possédant de nombreuses échelles de
temps et d’espace, allant de déplacements locaux et de
contacts directs entre individus jusqu’aux flots de trans-
port à l’échelle mondiale. Dans ce contexte, la modé-
lisation en épidémiologie a évolué depuis des modèles
compartimentaux simples jusqu’à des modèles intégrant
de plus en plus de détails sur la structure de la popula-
tion considérée et les interactions entre individus.

Ces approches de plus en plus détaillées ont été ren-
dues possibles ces dernières années grâce une crois-
sance spectaculaire de la puissance des ordinateurs.
Cette croissance a permis d’obtenir et de manipuler
un grand nombre de données sur la structure démo-
graphique des populations, et d’étudier de manière ex-
tensive certains réseaux de transports qui permettent à
l’épidémie de se propager. Ces données ont en parti-
culier permis aux chercheurs de caractériser quantita-
tivement les propriétés statistiques de ces réseaux et de
mettre en évidence des propriétés complexes, telles que
de très fortes hétérogénéités.

Ces avancées ont permis de montrer les limites de
certaines hypothèses habituellement utilisées en épidé-
miologie. En particulier, l’hypothèse d’homogénéité se-
lon laquelle tous les individus ont le même environne-
ment semble être une approximation très brutale dans de
nombreux cas. La description de la propagation d’épi-
démies par un simple processus de diffusion spatiale est
également très irréaliste dans de nombreuses situations.
De façon générale, la complexité des réseaux sociaux et
de transport, ainsi que leurs différents niveaux d’hétéro-
généité, ne doivent donc surtout pas être négligées.

Ces considérations peuvent apparaître comme justi-
fiant une modélisation des systèmes complexes conte-
nant le plus de détails possible. Le débat entre réalisme,
précision et généralité n’est certes pas nouveau, mais
la possibilité d’intégrer un très grand nombre de détails
le remet à une place centrale. D’un côté, les modèles
très simplifiés peuvent permettre de mettre en évidence
le mécanisme principal d’un phénomène, mais au détri-
ment de la précision et du réalisme. À l’autre extrême,
des modèles intégrant un très grand nombre de para-
mètres rendent une description réaliste des phénomènes
possible, au risque cependant de rendre opaque les mé-
canismes fondamentaux.

Il est donc très difficile de proposer un modèle qui
reste à un niveau raisonnable de réalisme et de préci-
sion afin d’être utile à la prévision et à la mise en place
de stratégies de contrôle, mais qui soit aussi suffisam-
ment simple pour maîtriser les approximations utilisées
et comprendre la nature des mécanismes sous-jacents.
Les récentes avancées dans la compréhension des sys-
tèmes complexes jouent ici un rôle majeur. Pour ces
systèmes complexes, qui sont généralement composés
d’un grand nombre de composants dont l’interaction
donne lieu à des comportements collectifs non triviaux,
il est en général possible d’identifier les paramètres qui
sont réellement pertinents pour leur description à grande
échelle. Ceci permet alors d’étudier de manière systé-
matique les caractéristiques fondamentales de phéno-
mènes dynamiques, et en particulier de la propagation
d’épidémies.

Dans cet article, nous passons en revue les progrès
récents dans la modélisation de propagation d’épidé-
mies qui intègrent nos connaissances sur les réseaux
complexes. Nous discutons en premier lieu les carac-
téristiques des systèmes complexes, qui se révèlent par-
ticulièrement pertinentes pour la modélisation de la pro-
pagation d’épidémies. Nous rappelons ensuite les effets
des fortes fluctuations de degré, typiques de nombreux
réseaux complexes, sur la propagation d’épidémies. En-
fin, dans la dernière partie, nous considérons des mo-
dèles plus réalistes dits de « métapopulations ». En parti-
culier, nous discutons les directions prises ces dernières
années, qui ouvrent la voie à la construction d’une « épi-
démiologie numérique » capable de prédictions quanti-
tatives.

1. Complexity and epidemic modelling

Epidemic forecast is crucially depending on our abil-
ity to model the spread of epidemics in spatially ex-
tended systems and the movement of individuals at
various levels, from the global scale of transportation
flows to the local scale of the activities and contacts
of individuals. In this context, modelling in mathemat-
ical and statistical epidemiology has evolved from sim-
ple compartmental models into structured approaches
in which the heterogeneities and details of the popu-
lation and system under study are becoming increas-
ingly important features [1] (see Fig. 1). In the case of
spatially extended systems, modelling approaches have
been extended into schemes that explicitly include spa-
tial structures and consist of multiple sub-populations
coupled by travelling fluxes, while the epidemic within
the sub-population is described according to approxi-
mations depending on the specific case studied [2–10].
This patch or meta-population modelling framework
has then grown into a multiscale framework in which
the various possible granularities of the system (country,
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Fig. 1. Different scales structure used in epidemic modelling. Circles represent individuals and each colour corresponds to a specific stage of
the disease. From left to right: homogeneous mixing, in which individuals are assumed to homogeneously interact with each other at random;
social structure, where people are classified according to demographic information (age, gender, etc.); contact network models, in which the
detailed network of social interactions between individuals provide the possible virus propagation paths; multi-scale models, which consider
sub-population coupled by movements of individuals, while homogeneous mixing is assumed on the lower scale; agent-based models, which
recreate the movements and interactions of any single individual on a very detailed scale (a schematic representation of a city is shown).
intercity, intracity) are considered through different ap-
proximations and coupled through interaction networks
describing the flows of people and/or animals [10–17].
At the most detailed level, the introduction of agent-
based models (ABM) has enabled to stretch even more
the usual modelling perspective, by simulating the prop-
agation of an infectious disease individual by individual
[18,19].

The above modelling approaches are based on actual
and detailed data on the activity of individuals, their in-
teractions and movement, as well as the spatial structure
of the environment, transportation infrastructures, traf-
fic networks, and travel times. While for a long time
this kind of data was limited and scant, recent years
have witnessed a tremendous progress in data gather-
ing, thanks to the development of new data-processing
tools and the increase in computational power. A huge
amount of data, collected and meticulously catalogued,
has become finally available for scientific analysis and
study. The scientific community has subsequently un-
covered in such data the presence of complex prop-
erties and heterogeneities that cannot be neglected in
epidemic-modelling description. In particular, the ever-
increasing level of interconnectedness and globalization
of our modern society along with a high level of diver-
sity and heterogeneity induces a novel epidemiological
context: the mathematical and computational modelling
of disease spread needs to integrate such complex fea-
tures.

Although there is no commonly accepted definition
of complex systems, they share a number of character-
istics. They are made of a large number of interacting
components and there is not a global blueprint control-
ling their evolution. One of the most peculiar features
of complex systems is their non-trivial collective behav-
iour and their resilience to perturbations; i.e. their ability
to adapt to a fluctuating environment and to evolve. This
last point in particular allows one to distinguish com-
plex from complicated systems, since random perturba-
tions on complicated systems will lead in most cases to
their failure.

These considerations might appear as a call for
a modelling approach of complex systems that consid-
ers as many possible parameters and details as we can
possibly handle. The debate about the amount of “re-
alism, precision, and generality” needed in a model is
not new, but still very vivid [20,21]. As noted by May
and previous authors (see [20] and references therein),
there is a broad spectrum of models ranging from ‘toy’
models to highly detailed models. Toy models sacri-
fice precision and sometimes realism in order to capture
the essence of the phenomenon and the general mecha-
nisms. On the other side of the spectrum, models with
a high level of detail provide the opportunity of analyz-
ing the spreading process in a very realistic way, making
all assumptions explicit, the main drawback being that
the key mechanisms underlying the epidemic evolution
are difficult to identify and discriminate because of the
numerous assumptions and of the large number of ele-
ments of the system. It is thus a difficult task to obtain
finally a model that stays at a reasonable level of pre-
cision, but still captures enough realism to be useful
in practical situations, such as forecasting and control
strategies’ assessment. In the case of complex systems,
this task is simplified by the fact that it is possible to dis-
tinguish different classes of parameters and to identify
which ones are really relevant in the description of the
large-scale behaviour of the system. By leveraging on
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the recent understanding of complex systems, it is then
possible to complement the basic approaches developed
in mathematical and statistical epidemiology with the
introduction of large scale systems (104 to 106 degrees
of freedom), and to isolate the main features responsible
for their behaviour. This allows the systematic investi-
gation of the impact of the various complex features of
real systems on the basic properties of epidemic spread-
ing.

In the following, we provide a discussion of the var-
ious instances at which the inclusion of complex fea-
tures is relevant in epidemic modelling. We will then
discuss the spread of epidemics in complex networks
and the effect of large-degree fluctuations on the spread-
ing process. In Section 4, we discuss a further step
towards realism with the implementation of metapop-
ulation models. In this Section, we will focus especially
on the new directions emerged in the last years in the
context of large computational approaches that pave the
way to the establishment of computational infrastruc-
tures able to provide quantitative forecast of epidemic
spreading.
2. From Euclidian space to networks

In the pre-industrial times, disease spread was mainly
a spatial diffusion phenomenon. For instance, during the
spread of the so-called Black Death, which occurred in
the 14th century, only few travelling means were avail-
able and typical trips were limited to relatively short
distances on the time scale of one day.

Historical studies confirm that the propagation
(Fig. 2) indeed followed a simple scheme, with a spatio-
temporal spread mainly dominated by spatial diffu-
sion. More precisely, ballpark calculations on the his-
torical data show that the Black Death essentially
spread through Europe from south to north, with the
invasion front moving at an approximate velocity of
200–400 miles/year [22]. Mathematically, this process
can be described with a simple Susceptible-Infected-
Removed (SIR) model with diffusion, which can be
written as:

(1)
∂I

∂t
= βSI − μI + D∇2I
Fig. 2. Map of the propagation of the Black Death in the 14th century. The epidemic front spread in Europe with a velocity of the order of
200–400 miles per year.
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where β is the transmission probability from fleas to rat
and eventually to humans, I (resp. S) the number of in-
fected (resp. susceptible) individuals, μ is the inverse
of the average infectious period (which is of the order
of 1 month). The last term describes the diffusion and
represents the movement of people (its evaluation is, of
course, critical, and some numerical estimate can be ob-
tained based on the velocity of rumour spreading, see,
e.g., [22]). This equation predicts an invasion epidemic
front travelling with a velocity given by:

(2)V = 2
√

βS0D

[
1 − μ

βS0

]1/2

where S0 is the population density. Interestingly, a rough
numerical evaluation of this formula gives V ∼ 140
miles/year, in reasonable agreement with historical
data [22]. This simple argument shows that spatial dif-
fusion is likely capturing the main dynamics of the
problem and allows us to obtain an understanding of
epidemic behaviour in the Middle Ages. Noticeably, this
strategy is still effective for epizootic waves in wild an-
imal populations (see [22] and references therein).

Our modern societies are sharply contrasting with the
previous example: due to the large variety of travelling
means with different distance and time-scales associ-
ated, epidemiology cannot simply rely on an approxi-
mate spatial description of the disease spread. The in-
terplay between social networks and infrastructures was
argued to be at the origin of the spreading pattern of
a disease already observed in the 19th century, when
the English physician John Snow analyzed on a map
the relation between the public water-supply system and
cholera cases in London [23]. As anticipated moreover
already in 1933 [24], the large scale and geographi-
cal impact of infectious diseases on populations in the
modern world is mainly due to commercial air travel.
This has been repeatedly and dramatically demonstrated
in several circumstances, such as the international air-
line hub-to-hub pandemic spread of acute hemorrhagic
conjunctivitis in 1981 [25], and more recently the evo-
lution of SARS epidemic [26]. While this epidemic in-
deed first diffused out of its origin in China and spread
in South-East Asia, it also reached very rapidly much
farther regions, such as North America and Europe,
brought by infected individuals travelling by plane (see
Fig. 3). One of the most dangerous aspects of the SARS
epidemic was in fact its very fast spread on world-
wide scales. This picture, therefore, cannot be simply
described in terms of diffusive phenomena, but ought
to explicitly incorporate the spatial structure of modern
transportation networks [27,28], which have been iden-
tified as one of the main mechanisms for propagation
on a global scale. In this perspective, epidemic mod-
elling thus changes from a description in terms of local
diffusion to one in which long-range interactions (i.e.
flights connecting far apart airports) play a crucial role.
The identification and characterization of the underly-
ing network of infrastructures is therefore fundamental.
Fig. 3. Map of the cumulative number of reported cases of SARS infection, according to WHO data of 7 November 2006.
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Networks that trace the activities and interactions
of individuals, social patterns, transportation fluxes,
and population movements on a local and global scale
[18,27,29,30] are therefore the key ingredients in our
understanding of epidemic behaviour and in our capa-
bilities to predict their evolution. The importance of
networks in epidemiology has not to be stressed here.
The population connectivity pattern and the structure
of meta-population models are for example naturally
defined in terms of networks. The recent progresses
in the field stem from the increased ability to gather
data on several large sets of networked structures and
populations, finding that they exhibit complex features
encoded in large-scale heterogeneity, self-organization
and other properties typical of complex systems [31–
33]. While heterogeneity has been acknowledged since
long as a relevant factor in determining the proper-
ties of epidemic spreading phenomena [1,34], many
real world networks exhibit levels of heterogeneity that
were not anticipated until a few years ago. Moreover,
the presence of such features was recently found to
have a strong impact on the resulting infection dy-
namics, breaking down the standard epidemiological
framework. In order to discuss the relevance of complex
systems’ properties on the spread of an infectious dis-
ease, we will distinguish in the following between two
different levels of modelling approaches corresponding
to two different granularity scales – the population and
meta-population description levels.

2.1. Single population level

Accurate data on the human interaction between in-
dividuals is usually rather difficult to obtain. Data on
single populations are not abundant and generally trou-
bled by issues such as the concurrency of relations or
the sampling biases. Several recent studies on the net-
work of sexual contact [29,30] are however showing
that the number of sex partners is broadly distributed.
This is a very peculiar feature typical of many natural
and artificial complex networks, characterized by vir-
tually infinite degree fluctuations, where the degree of
a given node represents its number of connections to
other nodes. In contrast with the homogeneous random
graphs characterized by nodes having a typical degree
k close to the average 〈k〉, such networks are structured
in a hierarchy of nodes with a few nodes having very
large connectivity – the hubs –, while the vast majority
of nodes have smaller degrees. This feature usually finds
its signature in a heavy-tailed degree distribution, often
approximated by a power-law behaviour [31–33] of the
form P(k) ∼ k−γ , with 2 � γ � 3, which implies a non-
negligible probability of finding vertices with very large
degrees [31–33,35]. Other examples of heterogeneity
have also been recently studied, such as the heterogene-
ity in the transmissibility and population social struc-
ture, which have been argued to have a very large impact
on epidemics [36,37]. Considering the level of single
individual, it is worth noting that epidemic modelling
is widely used also in the case of computer viruses
and malware. In this context, the connectivity architec-
tures over which the virus activity occurs are in most
cases very heterogeneous, characterized by large-degree
fluctuations with contact distributions varying over 3
to 6 orders of magnitude. Typical examples include
the physical Internet, the WWW, peer-to-peer and e-
mail networks, online communities, and other cyber-
networks. The spread of viruses and worms on digital
social networks and info-structures shows unexpected
behaviours that cannot be explained within the frame-
work of homogeneous assumptions. Long-lasting sta-
tionary states, long lifetimes of the viruses, low efficacy
of massive immunization campaigns are all distinctive
phenomena, in which a key role is played by the large
heterogeneity of the connectivity pattern. The finite
probability of finding nodes with a very large number of
connections implies the use of a theoretical scenario that
departs from the standard homogeneous assumptions.

2.2. Meta-population level

Patch or meta-population modelling frameworks
consider multiple sub-populations coupled by move-
ments of individuals. These models are defined by the
network describing the coupling among the populations
along with the intensity of the coupling, which in gen-
eral represents the rate of exchange of individuals be-
tween two populations. Meta-population models can be
devised at various granularity levels (country, intercity,
intracity) and the corresponding networks are therefore
including very different systems and infrastructure. This
implies scales ranging from the movement of people
within locations of a city to the large flows of travellers
among urban areas.

At the lowest scale, the urban level, an impressive
characterization of the human flows was recently con-
ducted by the TRANSIM group [18]. This study fo-
cused on the network of locations in the city of Portland,
Oregon, including homes, offices, shops, and recre-
ational areas. The temporal links between locations rep-
resent the flow of individuals going at a given time from
one place to another. The resulting network is char-
acterized by broad distributions of the degrees and of
the flows of individuals travelling on a given connec-
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tion [18]. Strong heterogeneities are thus present, not
only at the topological level, but also at the level of the
traffic on the network: a simultaneous characterization
of the system in terms of both topology and weights
associated with connections is needed to integrate the
different levels of complexity in a unifying picture [27].

Similar results have been found in commuting pat-
terns among cities and counties within a given geo-
graphical region/country. In this case, the nodes of the
network represent cities, counties and in general munic-
ipalities or urban aggregations coupled by connections
that correspond to the commuting flows of individuals.
The analysis of these networks uncovered rather homo-
geneous topologies – mainly due to strong spatial con-
straints – associated with very large fluctuations in the
travel flows of individuals [38]. The broad distribution
of travel flows plays an important role in the predictabil-
ity of an epidemic spread, as will be discussed in the
following sections, and needs therefore to be taken into
account for a complete understanding of the process.

Finally, the global scale is characterized by the
air connections infrastructure, composed by airports
(nodes) and direct flights among them (links). Data
representing the travel flow of passengers defines the
weight to each connection [27]. This transportation net-
work displays several strong levels of heterogeneity.
The distribution of degrees (i.e., of the number of con-
nections of an airport) is scale-free and the traffic is
very broadly distributed, varying over several orders
of magnitude [27,28]. This points to a structure that is
composed by airports having large fluctuations in their
number of connections to other airports and, moreover,
to number of passengers travelling on a given route
ranging from few individuals to millions of individu-
als in a given amount of time.

All these features have important implications on
the dynamical processes occurring in the system. Mod-
elling frameworks that neglect any of these heterogene-
ity properties would therefore miss crucial ingredients
of the propagation dynamics of epidemics. In the fol-
lowing chapter, we will review some basic results con-
cerning the effect of fluctuations in our understanding
of epidemic spreading.

3. Complex networks: effect of degree fluctuations
on epidemic processes

The heterogeneity found in the connectivity pattern
of the contact networks described in the previous sec-
tion has a strong impact on the properties of the dy-
namical processes occurring on the networks. A striking
example is provided by the different expressions of the
necessary condition for the spread of a disease across
a population, depending on the homogeneous or hetero-
geneous character of the contact network of this popu-
lation.

In the framework of homogeneous approximations,
the SIR model described by Eq. (1) leads to a major out-
break, thus infecting a finite fraction of the population,
if the following condition – called epidemic threshold
– is satisfied: S0β/μ > 1 [1,22,50]. This condition sim-
ply states that in order to have a non-zero fraction of the
population infected by the virus, the rate at which infec-
tious individuals are generated must be larger than the
rate at which they recover from the disease.

In order to account for contact networks in which
different individuals can have very different numbers
of contacts (degrees), Eq. (1) has to be generalized to
describe the evolution of the numbers of infected in-
dividuals of degree k. It can then be shown that the
disease will affect a finite fraction of the population if
βS0/μ > 〈k〉/〈k2〉 [39,40]. For homogeneous patterns
of contacts, 〈k2〉 is finite, but the picture is completely
different when the underlying network on which the
infection dynamics occurs displays large-degree fluctu-
ations, i.e. when the degree distribution is heavy-tailed.
In particular, scale-free networks with degree exponent
2 < γ � 3, for which 〈k2〉 → ∞ in the limit of an infi-
nitely large network, experience a null epidemic thresh-
old, since the above condition is always satisfied. Even
diseases with very low transmission probabilities are
thus able to cause a major outbreak infecting a finite
fraction of the nodes. This new scenario is of practical
interest in computer virus diffusion and for the spread-
ing of diseases in heterogeneous populations [29,30,32,
33,40]. It also raises new questions on how to protect the
network and find optimal strategies for the deployment
of immunization resources [41,42].

The previous result on the epidemic threshold con-
cerns the stationary properties of endemic states or the
final percentage of cases of an epidemic. The impact
of topological heterogeneities of the contact network on
the dynamical evolution of the outbreaks has also been
investigated [43]. It turns out that the time behaviour
of epidemic outbreaks and the growth of the number
of infected individuals are governed by a time scale τ

proportional to the ratio between the first and second
moment of the network’s degree distribution:

(3)τ = 〈k〉
β〈k2〉 − (β + μ)〈k〉

This result implies a very fast rise of the prevalence
in very heterogeneous networks for which 〈k2〉 is very
large. In particular, it shows that for scale-free contact
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networks with 2 � γ � 3, the lack of an intrinsic epi-
demic threshold goes together with a virtually infinite
propagation velocity of the infection, since 〈k2〉 → ∞
in the infinite size limit. Furthermore, the detailed prop-
agation in time of the infection results in a striking hi-
erarchical dynamics, in which the infection propagates
from higher to lower degree classes. The infection first
takes control of the large degree vertices in the net-
work, then rapidly invades the network via a cascade
through progressively smaller degree classes. Providing
a clear picture of how the infection propagation occurs
in heterogeneous networks, these results might be used
to develop dynamical ad-hoc strategies for network pro-
tection. In particular, targeted immunization strategies
and targeted prophylaxis that evolve with time might be
particularly effective in the control of epidemics on het-
erogeneous patterns, compared with massive uniform
vaccinations or stationary interventions.

4. Meta-population models: Integrating several
levels of complexity

The relevant impact of heterogeneity and connectiv-
ity fluctuations in the epidemic modelling at the level
of a single population leads us to investigate the role
of complex connectivity patterns and traffic in meta-
population models. Let us consider as a prototypical
case the worldwide spreading of epidemics through air
travel. As a basic modelling strategy, it is possible to
use a meta-population approach [7–9] in which individ-
uals are allowed to travel from one city to another by
means of the airline transportation network, while the
disease within the city is described with opportune com-
partmental models or more detailed description of the
disease dynamics. This amounts to write for each urban
area the set of equations:

(4)
∂Ii

∂t
= K(Si, Ii,Ri) + Ωi

({Ij }
)

where the first term of the r.h.s. of the equation rep-
resents the variation of infected individuals due to the
infection dynamics inside the city i (here, for the sake
of simplicity, we consider a simple SIR model), and the
second term corresponds to the net balance of infectious
individuals travelling in and out of city i. This last term,
the transport operator Ωi , depends on the probability
pij that an infected individual will go from city i to
city j , and can be simply written as:

(5)Ωi =
∑

j∈V (i)

(pjiIj − pij Ii)

representing the total sum of infectious individuals ar-
riving in city i from all neighbouring cities j , minus
the amount of infectious individuals travelling in the
opposite directions. Similar equations can be written
for all the compartments included in the disease model
assumed at the sub-population level, finally leading to
a set of differential equations where the transport oper-
ator acts as a coupling term among the evolution of the
epidemics in the various urban areas.

This modelling program dates back to the work of
Rvachev and Longini [11], and it has been used along
the years to simulate diseases such as pandemic in-
fluenza [44–46], HIV [47], and SARS [13]. While these
earlier studies were considering a limited number of
urban areas and travel connections, it has recently be-
come possible to scale up this approach by including the
full International Air Transport Association (IATA) [48]
database. This has led to a modelling framework [16,17]
considering up to 3100 airports with demographic data
for the surrounding urban areas and 17 182 connections
among them, each representing the presence of a direct
flight. This corresponds to more than 99% of the world-
wide commercial traffic by plane. To each link connect-
ing airports i and j is attached the weight wij , given
by the number of passengers travelling on that route in
a given time (e.g., on a daily basis). The inclusion of
such an extensive database is motivated by the various
levels of complexity and heterogeneity present in the
system composed by the worldwide air transportation
network (WAN) and the associated urban areas. In par-
ticular, it is possible to identify three relevant levels of
strong fluctuations: the topology of the airport network,
the distributions of the numbers of passengers and of the
city populations (see Fig. 4).

The model obtained by integrating all these data and
the aetiology of the disease within each city can be used
to forecast the behaviour of emerging diseases as well
as to validate the approach. Strikingly, this modelling
appears to provide very good results in agreement with
historical data [13,49], thus spurring the issue of iden-
tifying the fundamental limits in epidemic evolution
predictability with computational modelling and their
dependence on the underlying complex features of the
system.

A major question in the modelling of global epi-
demics consists indeed in providing adequate informa-
tion on the reliability of the obtained epidemic forecast,
i.e. the epidemic predictability. The intrinsic stochastic-
ity of the epidemic spreading will make each realization
unique and reasonable forecast can be obtained only
if all epidemic outbreak realizations starting with the
same initial conditions and subject to different noise
realizations are reasonably similar. A convenient quan-
tity to monitor in this respect is the vector 
π(t), whose
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Fig. 4. Probability distributions of (A) the number of connections of each airport, (B) the number of passengers travelling on a given connection
between a pair of airports, (C) the population size of the urban area surrounding each airport. Topology and traffic data are obtained from the
IATA [48] database, while population data are extracted from several different census databases, available on the web.
components are πj (t) = Ij (t)/
∑

Il ; i.e. the normalized
probability that an infected individual is in city j . The
similarity between two outbreak realizations (I and II)
is quantitatively measured by the statistical similarity of
the vectors 
π I(t) and 
π II(t). Such a measure of similar-
ity sim(
π I, 
π II) is given by the standard Hellinger affin-

ity: sim(
π I, 
π II) = ∑√
π I

jπ
II
j . Possible differences in

the total (worldwide) epidemic prevalence i = ∑
Ij /P

(where P is the worldwide population) are moreover
measured by sim(
iI,
iII) where 
iI(II) = (iI(II),1 − iI(II)).
The overlap function measuring the similarity between
two different outbreak realizations is thus defined by:

(6)Θ(t) = sim(
iI,
iII)sim(
π I, 
π II)

The overlap is maximal (Θ(t) = 1) when the very same
cities have the very same number of infectious indi-
viduals in both realizations, and Θ(t) = 0 if the two
realizations do not have any common infected cities at
time t . Clearly, a large overlap corresponds to a pre-
dictable evolution, providing a direct measure of the
reliability of the epidemic forecast.

If we consider a model in which the cities are
linked by a completely homogeneous transport network
(HOMN), where both degrees of each city and traffic
flows on each connection are close to their average val-
ues, we find a significant overlap (Θ(t) > 80%, see
Fig. 5) even at the early stage of the epidemics – the
most relevant phase for epidemic surveillance and the
more prone to stochastic fluctuations. The picture is dif-
ferent if we consider a heterogeneous topology (with
both badly connected airports and hubs) associated to
homogeneous travel fluxes (HETN), since especially
at the initial stage of the epidemics the predictability
is much smaller. Finally, the values of the overlap for
epidemics propagating on the real air-transportation net-
work (WAN) show an intermediate situation.

These results may be rationalized by considering the
conflicting effects of the various levels of heterogeneity
(see Fig. 6). On the one hand, the heterogeneity of the
Fig. 5. Epidemics predictability. Percentage of overlap as a function of
time: the shaded area corresponds to the standard deviation obtained
with 5×103 couples of different realizations. Topological heterogene-
ity plays a dominant role in reducing the overlap in the early stage
of the epidemics. Large fluctuations at the end of the epidemics are
observed when a heterogeneous topology is considered, due to the
different lifetime of the epidemics in distinct realizations, induced by
the large topological fluctuations of the network. We also report the
prevalence profile as a function of time, showing that the maximum
predictability corresponds to the prevalence peak.

connectivity pattern (broad distribution of degrees), and
in particular the existence of hubs, provides a multiplic-
ity of equivalent channels for the travel of infected in-
dividuals, depressing the predictability of the evolution,
as the comparison of HETN and HOMN shows. On the
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Fig. 6. Influence of heterogeneity on the predictability. (A) Large de-
grees lower the predictability. Starting from the hub if all weights are
equal, a disease can spread on all the nodes with equal probability.
(B) For the same topology, weight heterogeneity selects a particular
path (from the hub to the node i) and thus increases the predictability.

other hand, the heterogeneity of traffic flows introduces
dominant connections that select preferential pathways,
increasing the epidemic predictability. The backbone of
such dominant spreading channels thus defines specific
‘epidemic pathways’, which are weakly affected by the
stochastic noise. In the case of the worldwide airport
network, the heterogeneity of the fluxes thus partially
compensates for the decrease in predictability due to the
topological heterogeneity.

In summary, different levels of complexity of the
system affect our ability to predict the spatio-temporal
spread of a disease in opposite ways. The intrinsic sto-
chastic nature of the propagation of directly transmit-
ted diseases – inherent both in the infection dynamics
and in the movements of individuals – makes it harder
to forecast the process evolution on a complex pattern
of interactions. However, an additional level of hetero-
geneity, here encoded in the broad distribution of pas-
senger travel flows, plays a crucial role at our advantage,
making epidemic forecasts a feasible problem to ad-
dress. This result clearly shows how the interplay and
the integration of several levels of complexity of the sys-
tem produce unexpected phenomena, which needs to be
accounted for in order to obtain a better general under-
standing of the process.

5. Conclusions and perspectives

Taking into account the complexity of real systems in
epidemic modelling has shown to be unavoidable, and
the corresponding approaches have already produced
a wealth of interesting results. While this has stimulated
the recent focus on large-scale computational approach
to epidemic modelling, it is clear that many basic theo-
retical questions are still open. How does the complex
nature of the real world affect our predictive capabili-
ties in the realm of computational epidemiology? What
are the fundamental limits in epidemic evolution pre-
dictability with computational modelling? How do they
depend on the level of accuracy of our description and
knowledge on the state of the system? Tackling such
questions necessitates exploiting several techniques and
approaches. Complex systems and networks analysis,
mathematical biology, statistics, non-equilibrium statis-
tical physics, and computer science are all playing an
important role in the development of a modern computa-
tional epidemiology approach. While such an integrated
approach might still be in its first steps, it seems now
possible to imagine ambitiously the creation of com-
putational epidemic forecast infrastructures able to pro-
vide reliable, detailed, and quantitatively accurate pre-
dictions of global epidemic spread.
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