
Visualizing Knowledge Domains1 
 

Katy Börner 
School of Library and Information Science, Indiana University, Bloomington, IN 47405, USA 
katy@indiana.edu 

Chaomei Chen  
College of Information Science and Technology, Drexel University, Philadelphia, PA 19104, USA 
chaomei.chen@cis.drexel.edu 

Kevin W. Boyack  
Sandia National Laboratories, Albuquerque, NM 87185, USA 
kboyack@sandia.gov 

"The purpose of computing is insight – not numbers." 

R. W. Hamming (1962) 
1 INTRODUCTION ...............................................................................................................................................2 

2 HISTORY.............................................................................................................................................................4 
2.1 SCIENTOMETRICS, BIBLIOMETRICS, AND CITATION ANALYSIS ......................................................................4 
2.2 MAP GENERATION AND VISUALIZATION ........................................................................................................7 

3 PROCESS FLOW OF VISUALIZING KNOWLEDGE DOMAINS .............................................................8 
3.1 UNITS OF ANALYSIS .....................................................................................................................................10 
3.2 MEASURES AND SIMILARITY CALCULATION ................................................................................................11 

3.2.1 Measures..............................................................................................................................................11 
3.2.2 Simple Similarities ...............................................................................................................................12 
3.2.3 Vector Space Model .............................................................................................................................12 

4 ENABLING TECHNOLOGIES ......................................................................................................................14 
4.1 DIMENSIONALITY REDUCTION TECHNIQUES ................................................................................................14 

4.1.1 Eigenvalue/Eigenvector Decomposition ..............................................................................................14 
4.1.2 Factor Analysis and Principal Components Analysis..........................................................................15 
4.1.3 Multidimensional Scaling ....................................................................................................................15 
4.1.4 Latent Semantic Analysis .....................................................................................................................16 
4.1.5 Pathfinder Network Scaling.................................................................................................................17 
4.1.6 Self-Organizing Maps ..........................................................................................................................19 

4.2 CLUSTER ANALYSIS .....................................................................................................................................20 
4.3 SPATIAL CONFIGURATION ............................................................................................................................21 

4.3.1 Triangulation .......................................................................................................................................21 
4.3.2 Force Directed Placement ...................................................................................................................22 

4.4 VISUALIZATION AND INTERACTION DESIGN.................................................................................................23 
4.4.1 Visualization ........................................................................................................................................23 
4.4.2 Interaction Design ...............................................................................................................................24 
4.4.3 Focus+Context ....................................................................................................................................24 

                                                           
1 All figures in this chapter are available in color at 
http://www.asis.org/Publications/ARIST/Vol37/BornerFigures.html 
 
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United 
States Department of Energy under Contract DE-AC04-94AL85000. 

This is a preprint of Katy Börner, Chaomei Chen, 
& Kevin Boyack: Visualizing Knowledge Domains. 
In Blaise Cronin (Ed.), Annual Review of 
Information Science & Technology, Volume 37, 
Medford, NJ: Information Today, Inc./American 
Society for Information Science and Technology, 
chapter 5, pp. 179-255, 2003. 



 2

4.5 DISCUSSION..................................................................................................................................................26 
5 THE ARIST DATA SET...................................................................................................................................27 

5.1 DATA RETRIEVAL.........................................................................................................................................27 
5.2 COVERAGE ...................................................................................................................................................27 

6 THE STRUCTURE OF THE SUBJECT DOMAIN ......................................................................................30 
6.1 MULTIPLE MAPS OF THE DOMAIN ................................................................................................................30 

6.1.1 ARIST-GSA/StarWalker .......................................................................................................................31 
6.1.2 ARIST-ET-Map ....................................................................................................................................36 
6.1.3 ARIST-Cartographic-SOM Maps.........................................................................................................37 
6.1.4 ARIST-VxInsight ..................................................................................................................................39 

6.2 COMPARISON OF MAPS.................................................................................................................................42 
7 PROMISING AVENUES OF RESEARCH ....................................................................................................47 

8 CONCLUSIONS................................................................................................................................................50 

9 ACKNOWLEDGEMENTS ..............................................................................................................................50 

10 BIBLIOGRAPHY..........................................................................................................................................51 
 

ABSTRACT 
 
This chapter reviews visualization techniques that can not only be utilized to map the ever-
growing domain structure of scientific disciplines but that also support information retrieval and 
classification. In contrast to the comprehensive surveys done in a traditional way by Howard 
White and Katherine McCain (1997; 1998), the current survey not only reviews emerging 
techniques in interactive data analysis and information visualization, but also visualizes 
bibliographical structures of the field as an integral part of our methodology. The chapter starts 
with a review of the history of knowledge domain visualizations. We then introduce a general 
process flow for the visualization of knowledge domains and explain commonly used techniques. 
In the interest of visualizing the domain this article reviews, we introduce a bibliographic data set 
of considerable size, which includes articles from the citation analysis, bibliometrics, semantics, 
and visualization literatures. Using a tutorial style, we then apply various algorithms to 
demonstrate the visualization effects produced by different approaches and compare the different 
visualization results. At the same time, the domain visualizations reveal the relationships within 
and between the four fields that together form the topic of this chapter, domain visualization. We 
conclude with a discussion of promising new avenues of research and a general discussion. 
 
1 INTRODUCTION 
Painting a big picture of scientific knowledge has always been desirable for various reasons. 
Traditional approaches are brute-force in nature – scholars have to sort through through the 
mountains of literature to conduct their surveys. Obviously, this is time-consuming, difficult to 
repeat, and subjective. The task is enormous in its complexity. Sifting through recently published 
documents to find ones that will later be recognized as important is labor-intensive. Traditional 
approaches are increasingly hard to keep up with the pace of information growth. When it comes 
to a multidisciplinary field of study, it is rather difficult to maintain an overview of what is going 
on. Painting the “big picture” of an ever-evolving scientific discipline has been akin to the 
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situation described in a widely known Indian legend about blind men and an elephant. As the 
legend goes, six blind men were trying to find out what an elephant looks like. They touched 
different parts of the elephant and quickly jumped to their conclusions. The one touching the 
body said it must be like a wall; the one touching the tail said it is like a snake; the one touching 
the legs said it is like a tree trunk; etc. But science does not stand still; the steady stream of new 
scientific literature creates a continuously changing structure. The resulting disappearance, 
fusion, and emergence of research areas ads another twist to the legend – it is as if the elephant is 
running and dynamically changing in shape.  
 
Domain visualization is an emerging field of study that is in a similar situation. Relevant 
literature is spread across disciplines that traditionally have few connections. Researchers 
looking at the domain from a particular discipline cannot possibly have an adequate 
understanding of the whole. As noted by White and McCain (1997), the new generation of 
information scientists are on the one hand technically driven in the new rush of visualizing 
scientific disciplines. On the other hand, they are rather limited with regard to what has been 
done in terms of bridging between pioneers' theories and practices and today's more enabling 
technologies. If the difference between the past and present generations is in the power of 
available technologies, what they have in common is the ultimate goal – to reveal the 
development of scientific knowledge. Today’s use of this knowledge has expanded to include 
studies of scholarly communities and networks, the growth and evolution of fields, the diffusion 
of research topics, individual authors, or institutions, etc. 
 
The survey of White and McCain (1997) was done in a traditional way, i.e., using manual and 
intellectual analysis. Since then the size and the scope of the field has exploded and it is now 
well beyond the reach of traditional survey methods. The types of enabling techniques needed to 
do current analyses quickly and effectively are precisely the ones that belong to the domain 
visualization toolkit. These new techniques allow us to streamline the practice with an 
unprecedented scalability and repeatability. To form the big picture itself is also a typical 
problem in domain visualization. How to choose the source of data, how to analyze and visualize 
the data, and how to make sense of what is in the picture, are decisions to be made by the new 
generation of information cartographers. 
 
This work does not attempt to update the work of the former survey by providing an extensive 
bibliography with commentary on the field of literature mapping and visualization, but rather 
provides an overview of the many techniques and variations used in the process of mapping and 
visualizing knowledge domains. It also offers an opportunity to compare and contrast several 
different visualizations of the same data so as to illustrate characteristics of particular mapping 
techniques. This chapter does not cover some potentially relevant and important issues including 
user and task analysis, alternative input/output devices, visual perception principles, or 
evaluation of map relevance. 
 
The balance of this covers the following information. Section 2 sketches the history of research 
on visualizing knowledge domains that is rooted in fields such as scientometrics, bibliometrics, 
citation analysis, and information visualization. Section 3 explains the general process flow of 
visualizing knowledge domains and the general structure of this chapter. We then review 
measures and approaches to determine bibliographic, linguistic, co-word, co-term, co-
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classification, content, or semantic similarities.  Section 4 provides an overview of different 
mathematical techniques that are commonly used to analyze and visualize bibliographic data. 
Appropriate visualization and interaction metaphors ensuring that resulting maps can be 
intuitively and effectively used are introduced as well. Section 5 introduces a bibliographic data 
set of considerable size that will be utilized in this paper to map research on the visualization of 
knowledge domains in section 6. We conclude with a discussion of promising new avenues of 
research and a general discussion. 
 
2 HISTORY  
Narin and Molls (1977) and White and McCain (1989) compiled the very first ARIST reviews of 
bibliometrics research. In (1997), White and McCain gave a vivid account of the history of 
citation analysis and its application to the visualization of literatures. Borgman in (1990; 2000) 
and her recent ARIST chapter with Furner (2002) gave a comprehensive overview of 
bibliometric methods that can be used to describe, explain, predict, and evaluate scholarly 
communication. Wilson’s recent, very comprehensive review on informetrics covers 
bibliometrics research as well as other metric studies (2001). An in-depth account of theories and 
practices in the endeavor of mapping scientific frontiers is also the central topic of a forthcoming 
book (Chen, 2002). 
 
2.1 Scientometrics, Bibliometrics, and Citation Analysis 
Today’s wide availability of citation index databases originated in the 1950s. Indexing in the 
1950s was inconsistent and uncoordinated. There was widespread dissatisfaction with the array 
of traditional discipline-oriented indexing and abstracting services (Garfield, 1955). Eugene 
Garfield's pioneering paper in Science (Garfield, 1955) laid down the foundation of citation 
analysis today. In the words of White and McCain (1998): 
 

“Eugene Garfield, the founder of ISI, devoted years to fulfilling his dream of 
creating a multidisciplinary citation index. The development of the Science 
Citation Index represented a fundamental breakthrough in scientific information 
retrieval. What began as a commercial product—a unique resource for scientists, 
scholars, and researchers in virtually every field of intellectual endeavor—has 
evolved into a sophisticated set of conceptual tools for understanding the 
dynamics of science. The concept of citation analysis today forms the basis of 
much of what is known variously as scientometrics, bibliometrics, infometrics, 
cybermetrics, and webometrics. Garfield's invention continues to have a profound 
impact on the way we think about and study scholarly communication.” 

 
One of the pioneering domain visualization studies based on citation data is the creation of the 
historical map of research in DNA, which was done manually almost 40 years ago in early 1960s 
(Garfield, Sher, & Torpie, 1964). Soon thereafter Derek Price studied the same data in his classic 
work of mapping scientific networks (Price, 1961, 1963; Price, 1965). In domain visualization, 
interrelationships between research fronts are represented through spatial representations. Such 
spatial representations allow users to navigate the scientific literature based on the spatial 
patterns depicted. 
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Domain visualization aims to reveal realms of scientific communication as reflected through 
scientific literature and citation paths interwoven by individual scientists in their publications. 
There is indeed a profound connection between domain visualization and what Hjørland (1997) 
called domain analysis. Domain visualization can provide enabling techniques needed for 
domain analysis, especially in multidisciplinary and fast-moving knowledge domains. The field 
of domain visualization is also called scientography (Garfield, 1994), although the term 
scientography does not seem to be widely used. 
 
Garfield (1994) also introduced the concept of longitudinal mapping. In longitudinal mapping, a 
series of chronologically sequential maps can be used to detect the advances of scientific 
knowledge. Analysts and domain experts can use longitudinal maps to forecast emerging trends 
for a subject domain. Since domain visualizations typically reference key works in a field, they 
are a good tool to enable the novice to become familiar with a field through easy identification of 
landmark articles and books, as well as members of the invisible college or specialties. The Web 
of Knowledge, released in 2000 to commemorate Dr. Eugene Garfield’s 75th birthday, 
comprehensively addresses the history, theory, and practical applications of citation indexing and 
analysis (Cronin & Atkins, 2000). 
 
Scientometrics is a distinct discipline that has emerged from citation-based domain visualization. 
Scientometrics is the quantitative study of scientific communications, which applies 
bibliometrics to scientific literature. Robert Merton and Eugene Garfield regard the late Derek 
De Solla Price (1922-1983) as the “father of scientometrics.” Price made profound contributions 
to information science through his seminal work on networks of scientific papers (Price, 1965) as 
well as his landmark work Little Science, Big Science, and Beyond (Price, 1986).  
 
In 1981, the Institute for Scientific Information (ISI) published the pioneering Atlas of Science in 
Biochemistry and Molecular Biology (1981). The Atlas was constructed based on a co-citation 
index associated with publications in the field over a one-year period. It featured 102 distinct 
clusters of articles. These clusters, representing research front specialties, form a snapshot of 
significant research activities in biochemistry and molecular biology. The construction of this 
pioneering Atlas took several months. Garfield and Small (1989) explained the role of citation 
structures in identifying the changing frontiers of science.  
 
More recently, ISI has developed the SCI-Map software, which enables users to navigate a 
citation network. It has been used in numerous subject domains, including physics, chemistry, 
quantum systems, and other fields. For example, in 1994, Henry Small used SCI-Map to map 
AIDS research (Small, 1994). SCI-Map creates maps of individual research areas specified by 
the user. Given an author, paper, or keyword as a starting point, one can seed a map and then 
grow the map by specifying various desired connections at different thresholds of co-citation 
strength or distance. The network of connected nodes is formed by a series of iterations of 
clustering, including additional core papers with each successive node. The nodes are selected 
according to the strength of their links, and positioning is determined by the geometric 
triangulation method (see section 4.3.1).  
 
In his most recent work, Small explored the notion of a passage through science (Small, 1999a, 
2000). Passages linking the literature of different disciplines are likely to import or export a 
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method established in one discipline into another. This has been known as cross-disciplinary 
fertilization. As Small has noted, this reaching out or stretching can import or export methods, 
ideas, models, or empirical results from the author’s field to the other field. This requires 
scientists to have not only a broad awareness of literature, but also the creative imagination to 
foresee how the outside information fits with the problem at hand. He developed algorithms to 
blaze a magnificent trail of more than 300 articles across the literatures of different scientific 
disciplines.  
 
When speaking of citation indexing, one must also consider the Web-based citation database 
system ResearchIndex (formerly CiteSeer) developed by researchers at NEC Research Institute 
(Lawrence, Giles, & Bollacker, 1999). ResearchIndex allows users to search for various citation 
details of scientific documents available on the Web. This service provides a valuable 
complementary resource to ISI’s citation databases. ResearchIndex takes advantage of being able 
to access full text versions of scientific documents on the Web by introducing a functionality 
called citation context. Not only can users search the database on various bibliographic attributes 
of a document such as the author, article title, and journal title, but they can also use the citation 
context function to retrieve a list of highlights as excerpts from citing documents and access 
detailed statements of its perceived value. This function provides an invaluable tool for 
researchers to judge the nature of an influential article.  
 
Typically, the act of referencing another author's work in a scholarly or research paper is 
assumed to reflect a direct semantic relationship between the citing and cited works. However, a 
macroanalysis of cited and citing documents in terms of broad subject dispersion and a 
microanalysis that examined the subject relationship between citing and cited documents 
presented by (Harter, Nisonger, & Weng, 1993; Nisonger, Harter, & Weng, 1992) suggest that 
the subject similarity among pairs of cited and citing documents is typically very small, 
supporting a subjective, psychological view of relevance and a trial-and-error, heuristic 
understanding of the information search and research processes. 
  
The notion of bibliometric mapping has been further developed by researchers in the 
Netherlands, in particular Noyons and van Raan (Noyons, Moed, & Luwel, 1999; Noyons & Van 
Raan, 1998; van Raan, 2000). Noyons and van Raan have developed special mathematical 
techniques for bibliometric mapping. The basic assumption is that each research field can be 
characterized by a list of the most important keywords. Each publication in the field can in turn 
be characterized by a sub-list of these global keywords. Such sub-lists are like DNA fingerprints 
of these published articles. By matching keyword-based fingerprints, one can measure the 
similarity between a pair of publications. The more keywords two documents have in common, 
the more similar the two publications are, and the more likely they come from the same research 
area or research specialty at a higher level. Following the DNA metaphor, if two publications’ 
fingerprints are similar enough, they are bound to come from the same species. In (Noyons, 
Moed, & Luwel, 1999), they incorporate performance assessment into the creation of 
bibliometric maps in order to measure the impact level of different sub-fields and themes and to 
address strategic questions such as: who is where in the subject domain, and how strong is their 
research? 
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2.2 Map Generation and Visualization  
In 1987, the National Science Foundation (NSF) panel report (McCormick, DeFanti, & Brown) 
recommended that NSF fund immediate and longer-term research in what is now known as the 
field of scientific visualization. At that time, there were about 200 supercomputers in the United 
States. These supercomputers generated a vast amount of numerical data, mainly through 
computationally intensive simulation of physical processes. Virtual wind tunnels and high-
resolution predictive weather models are typical examples of scientific calculations that require 
visualization to present their output in an understandable form.  
 
Scientific visualizations map physical phenomena onto 2D or 3D representations that are 
typically not very interactive. In contrast, Information Visualization (IV) aims at an interactive 
visualization of abstract non-spatial phenomena such as bibliographic data sets, web access 
patterns, etc. 
 
Advances of information visualization were significantly driven by information retrieval 
research. A central problem for information retrieval researchers and practitioners is how to 
improve the efficiency and effectiveness of information retrieval. Generally speaking, the more a 
user knows about her search space, the more likely that her search will become more effective. 
Many information visualization systems depict the overall semantic structure of a collection of 
documents. Users can use this structural visualization as the basis for their subsequent browsing 
and search. Card (1996) and Hearst (1999) gave surveys of visualizing retrieval results. 
 
Edward Tufte has published three seminal books (Tufte, 1983; 1990, 1997) on display and 
visualization. Although his 1983 and 1990 books were published prior to the emergence of 
information visualization as a distinct field, they are highly regarded in the information 
visualization community. In particular, Tufte’s in-depth case study on the disaster of the launch 
of the space shuttle Challenger is a though-provoking example. 
 
Research in hypertext started to emerge as a distinct field of study in late 1980s following a 
number of pioneering hypertext systems, notably HyperCard from Apple and NoteCards from 
Xerox PARC (Halasz, 1988; Halasz, Moran, & Trigg, 1986). A core issue of hypertext research 
is to enable users to easily navigate in hypertext spaces (Conklin, 1987). The thinking-by-
association tradition of hypertext and the World-Wide Web later on has been widely attributed to 
the visionary Memex envisaged by Vannevar Bush (Bush, 1945). Researchers have studied a 
variety of navigation cues to help users to move around. One of the most popular 
recommendations for designers of hypertext systems is to have an overview map of the entire 
hypertext structure (Halasz, 1988). Advances have been made in automatically generating 
overview maps that can help users navigate. The mid-1990s saw a wide spread use of the World-
Wide Web. The sheer size of the Web has posed an unprecedented challenge for mapping.  
 
Geographic Information Systems (GIS) represent a gray area between information visualization 
and traditional cartography. Geographic coordinates provide a most convenient and natural 
organizing framework. A geographic framework can accommodate a wide variety of 
information. Thematic maps provide a rich metaphor for a class of information visualization 
known as information landscape. Notable examples include SPIRE/Themescape (Wise et al., 
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1995) and BEAD (Chalmers, 1992). A recent book by Martin Dodge and Rob Kitchin (2000) is a 
good source of examples of how geography influences mapping cyberspace. 
 
The number of review and survey articles on information visualization is steadily increasing 
(Card, 1996; Hearst, 1999; Herman, Melançon, & Marshall, 2000; Hollan, Bederson, & 
Helfman, 1997; Mukherjea, 1999). The first edited volume (Card, Mackinlay, & Shneiderman, 
1999) and the first authored monograph (Chen, 1999a) both appeared in 1999. There are 
currently about a half dozen books on the market on information visualization (Card et al., 1999; 
Chen, 1999a; Spence, 2000, 2001; Ware, 2000), as well as a related book on algorithms for 
graph visualization (Battista, Eades, Tamassia, & Tollis, 1999). A new, peer-reviewed 
international journal Information Visualization is to be launched in March 2002 by Palgrave, 
Macmillan's global academic publishing. Today, there are numerous workshops and special 
issues held all over the world relating to information visualization. 
 
Journals such as the Journal of the American Society for Information Science and Technology 
(JASIST) and Scientometrics have provided the focal forum for domain visualization. These 
journals traditionally have their main readership in Library and Information Science (LIS), rather 
than from other potentially relevant disciplines such as computer science, information 
visualization, and geographic information systems. In the past 15 years, information retrieval has 
enjoyed its prominent position in the mainstream information visualization research, but other 
research areas such as citation analysis and domain analysis remain tied to a relatively focused 
scientific community. 
 
Major information visualization and interaction design techniques as they pertain to the 
visualization of knowledge domains are discussed in section 4.4. 
 
3 PROCESS FLOW OF VISUALIZING KNOWLEDGE DOMAINS 
White and McCain (1997) defined five models of literatures: (1) bibliographic, (2) editorial, (3) 
bibliometric, (4) user, and (5) synthetic. With the computerized tools and techniques available 
today, the lines between these traditional models can become blurred. The model used by many 
researchers today might be described as a USER META MODEL. It is first a user model in that it 
is a reduction of the literature based on a user’s searches, queries, profiles, or filters, often 
generated quickly from computerized access to literature data sources, and formulated to provide 
answers to specific questions. It fulfills the role of the bibliographic or meta model in that it 
contains metadata – authors, titles, descriptive terms, dates, etc. – that can be used to define 
relationships pertinent to mapping, and also to display attributes of the data in modern 
visualizations. These data also often contain, or can easily be used to generate, bibliometric data 
– citation counts, term distributions, attributes by year, impact factors, etc. – that can be easily 
displayed by visualizations and that enhance map interpretation. Bibliometric attributes also 
allow for thresholds and rankings, which can be used to limit data to those deemed most 
pertinent or important by the user. 
 
The user meta model is closely related to the process by which domain maps or visualizations are 
produced. An overview of this process, with many of its possible perturbations, is shown in 
Figure 1. The general steps in this sequence are (1) data extraction, (2) definition of unit of 
analysis, (3) selection of measures, (4) calculation of a similarity between units, (5) ordination, 
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or the assignment of coordinates to each unit, and (6) use of the resulting visualization for 
analysis and interpretation. Steps four and five of this process are often distilled into one 
operation, which can be described as data layout.  
 

Figure 1. Process flow for mapping knowledge domains. 
 
The next few sections of this paper will address the process described in Figure 1. The balance of 
section 3 is used to review units of analysis, measures, and simple approaches to determine 
appropriate similarities between units. 
 
Section 4 is designed to address both the Figure 1 process and two major problems in 
communicating information: (1) multivariate data need to be displayed on the two-dimensional 
surface of either paper or computer screen and (2) large amounts of data must be displayed in a 
limited space with limited resolution. The first problem is tackled by applying mathematical 
dimensionality reduction algorithms to map n-dimensional data into a 2-D or 3-D space. The 
purpose of these algorithms is to place objects that are similar to one another in n-dimensions 
close to each other and to place dissimilar objects far apart. This process is also called 
ordination. Cluster techniques can be used to further group similar objects together. Commonly 
used techniques are presented in section 4. The second problem is typically minimized by 
applying interaction (panning, filtering) and distortion techniques (fisheye) as discussed in 
section 4.4.  
 
The general consensus in relevant fields such as information visualization and geographic 
cartography is that multiple maps are preferred to a single map whenever possible. This is 
because each map may show different insights from the same data set. Therefore, section 5 
introduces a bibliographic data set of the subject domain that will be utilized to demonstrate the 
different similarity measures, data mining techniques, and visualization approaches. Section 6 
shows multiple maps and comparisons of the example bibliographic data set, focusing on the key 
issues and key components uncovered through this multi-perspective approach. 
 

DATA UNIT OF MEASURES LAYOUT (often one code does both similarity and ordination steps) DISPLAY
EXTRACTION ANALYSIS

SIMILARITY ORDINATION

SEARCHES COMMON COUNTS/FREQUENCIES SCALAR (unit by unit matrix) DIMENSIONALITY REDUCTION INTERACTION
ISI CHOICES Attributes (e.g. terms) Direct citation Eigenvector/ Eigenvalue solutions   Browse
INSPEC Journal Author citations Co-citation Factor Analysis (FA) and   Pan
Eng Index Document Co-citations Combined linkage   Principal Components Analysis (PCA)   Zoom
Medline Author By year Co-word / co-term Multi-dimensional scaling (MDS)   Filter
ResearchIndex Term Co-classification Pathfinder networks (PFNet)   Query
Patents THRESHOLDS Self-organizing maps (SOM)   Detail on demand
etc. By counts VECTOR (unit by attribute matrix)    includes SOM, ET-maps, etc.

Vector space model (words/terms) ANALYSIS
BROADENING Latent Semantic Analysis (words/terms) CLUSTER ANALYSIS

By citation   incl. Singular Value Decomp (SVD)
By terms SCALAR

CORRELATION (if desired) Triangulation
Pearson's R on any of above Force-directed placement (FDP)
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3.1 Units of Analysis 
The first step in any mapping process is the extraction of appropriate data, as will be exemplified 
in section 7. We will not deal further with the extraction issue, search strategies, or the like, but 
simply note that the quality of any mapping or visualization is necessarily constrained by the 
quality of underlying data. The number of documents retrieved to generate a domain map can 
range from several hundred to tens of thousands. 
 
Selection of a unit of analysis, relevant to the questions one desires to answer, is the second step. 
The most common units in the mapping of literatures are journals, documents, authors, and 
descriptive terms or words. Each presents different facets of a domain and enables different types 
of analysis. For instance, a map of journals can be used to obtain a macro view of science 
(Bassecoulard & Zitt, 1999), showing the relative positions and relationships between major 
disciplines. Journal maps are also used on a much smaller scale (Ding, Chowdhury, & Foo, 
2000; Leydesdorff, 1994; McCain, 1998) to show fine distinctions within a discipline. 
 
Documents (articles, patents, etc.) are the most common unit used to map or visualize a 
knowledge domain. These maps are used for a variety of purposes, including document retrieval, 
domain analysis (Small, 1999a, 2000), informing policy decisions, or assessing research 
performance (Noyons, 2001; Noyons, Moed, & Luwel, 1999; Noyons, Moed, & Van Raan, 
1999; Noyons & Van Raan, 1998; Noyons & van Raan, 1998), and science and technology 
management or competitive intelligence (Boyack, Wylie, & Davidson, 2002).  
 
Author-based maps are also relatively common and occur in two main forms. Author co-citation 
maps (Chen, 1999b; Chen, Paul, & O'Keefe, 2001; Ding, Chowdhury, & Foo, 1999; Lin & Kaid, 
2000; White & McCain, 1998) are typically used to infer the intellectual structure of a field. By 
contrast, co-authorship maps are used to show the social network of a discipline or department 
(Mahlck & Persson, 2000). Co-authorship maps have been used by Glanzel and co-workers at 
the Hungarian Academy of Sciences for a series of studies designed to reveal international 
collaborations (Glänzel, 2001; Glänzel & DeLange, 1997). Newman has studied the structure of 
scientific networks from a statistical point of view (Newman, 2001a, 2001b). His techniques, 
while not done from a mapping or visualization perspective, are relevant and scale to very large 
systems (e.g., 1.5 million authors from Medline).  
 
Semantic maps, often known as co-word analyses, are used to understand the cognitive structure 
of a field (Bhattacharya & Basu, 1998; Cahlik, 2000; DeLooze & Lemarie, 1997; He, 1999; 
Salvador & Lopez-Martinez, 2000). These are generated from different textual sources including 
single words extracted from titles of articles, descriptive terms, or publisher-assigned descriptors 
supplied by a database vendor (e.g., ISI keywords). Earlier maps were enabled by the 
popularization and use of the Leximappe software (Callon, Courtial, Turner, & Bauin, 1983). 
However, Leximappe never really reached the US – researchers here tended to use standard 
bibliographic retrieval software (e.g., Dialog searching or Word Start) to collect co-descriptor or 
co-classification data. Ron Kostoff at the Office of Naval Research even wrote his own programs 
for co-word extraction and analysis. Many users today have computational tools2 that allow them 
to do their own term extraction and mapping. Kostoff and coworkers have developed the 

                                                           
2 For example, WordStat, available at http://www.simstat.com/wordstat.htm  
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Database Tomography technique, which they use to create science and technology roadmaps 
(Kostoff, Eberhart, & Toothman, 1998). Some confusion can be caused by reference to 
“semantic space” – which most often refers not to co-word maps, but rather to document maps 
using words or terms as labeling features.  
 
There is no explicit reason why multiple units (e.g., journals and authors) cannot be used in the 
same map, but it is not commonly done. One example of multiple units is the work by White and 
Griffith (1982), an author co-citation study in which useful phrases were used to “self-label” 
factors.  
 
3.2 Measures and Similarity Calculation 

3.2.1 Measures  

Measures have been defined very succinctly by White and McCain (1997), and rather than 
muddy the waters, we simply choose to quote their work here for completeness: 
 

“We use certain technical terms such as intercitation, interdocument, co-
assignment, co-classification, co-citation, and co-word. The prefix ‘inter-‘ implies 
relationships between documents [or units]. The prefix ‘co-‘ implies joint 
occurrences within a single document [or unit]. Thus, intercitation data for 
journals are counts of the times that any journal cites any other journal, as well 
as itself, in a matrix. (The citations appear in articles, of course.) The converse is 
the number of times any journal is cited by any other journal. The same sort of 
matrix can be formed with authors replacing journals. Interdocument similarity 
can be measured by counting indicators of content that two different documents 
have in common, such as descriptors or references to other writings (the latter is 
known as bibliographic coupling strength). Co-assignment means the assignment 
of two indexing terms to the same document by an indexer (the terms themselves 
might be called co-terms, co-descriptors, or co-classifications). Co-citation 
occurs when any two works appear in the references of a third work. The authors 
of the two co-cited works are co-cited authors. If the co-cited works appeared in 
two different journals, the latter are co-cited journals. Co-words are words that 
appear together in some piece of natural language, such as a title or abstract. 
Bother ‘inter-‘ and ‘co-‘ relationships are explicit and potentially countable by 
computer. Thus, both might yield raw data for visualization of literatures.” 

 
To this we add a few definitions. A “citation” is the referencing of a document by a more 
recently published document. The document doing the citing is the “citing” document, and the 
one receiving the citation is the “cited” document. Citations may be counted and used as a 
threshold (e.g., only keep the documents that have been cited more than 5 times) in a mapping 
exercise. Other terms used to describe citing and cited numbers are “in-degree” or the number of 
times cited, and “out-degree” or the number of items in a document’s reference list. Journal 
impact factors calculated from citation counts are published by ISI, and can be used to enhance 
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visualizations, as can the raw citation counts themselves.3 An excellent review of bibliometric 
and other science indicators was also provided by King (1987). 
 
3.2.2 Simple Similarities  

Similarity between units is typically based on one of the following.  
 
Citation linkages – These include direct citation linkage, co-citation linkage4, bibliographic 
coupling (Kessler, 1963), longitudinal coupling (Small, 1995), and Small’s combined linkage 
method (Small, 1997). Citation linkage similarities are naturally constrained to use with data 
derived from citation databases, such as the Science Citation Index or a patent database. 
 
Co-occurrence similarities – The most common co-occurrence similarities include co-term, co-
classification, author co-citation, and paper co-citation. Two of the more common similarity 
formulas used with co-occurrence are the simple cosine and Jaccard indices. Each counts the 
number of attributes common between two units (e.g., the number of terms in common between 
two articles), but differ in their normalization. Chen and Lynch (1992) developed an asymmetric 
cluster function and showed that it better represents term associations than the popular cosine 
function. Chung and Lee (2001) recently compared six different co-term association measures 
and discuss their relative behavior on a set of documents. Rorvig (1999) explored multiple 
similarity measurements on TREC document sets, finding that cosine and overlap measures best 
preserved relationships between documents.  The co-word similarity uses the same types of 
associations as the co-term, but is commonly based on words extracted from the titles and/or 
abstracts of articles by counting the number of times any two words appear in the same text 
segment.  
 
3.2.3 Vector Space Model  
The Vector Space Model (VSM) was developed by Gerald Salton (Salton, Yang, & Wong, 
1975). It is an influential and powerful framework for storing, analyzing, and structuring 
documents. Originally developed for information retrieval, the model is a widely used 
framework for indexing documents based on term frequencies. Its three stages are document 
indexing, term weighting, and computation of similarity coefficients: 

• Document indexing: Each document (or query) is represented as a vector in a high 
dimensional space. Dimensionality is determined by the number of unique terms in a 
document corpus. Non-significant words are removed from the document vector. A 
stop list, which holds common words, is used to remove high frequency words.5 

• Term weighting: Terms are weighted to indicate their importance for document 
representation. Most of the weighting schemes such as the inverse document 

                                                           
3 Nederhof and Zwaan (1991) collected peer judgments on the quality of journals by means of a world-wide mail 
survey among 385 scholars and probed the quality of the coverage by the SSCI and the AHCI of both core and 
noncore journals. Results showed convergence with those based on journal impact factors. 
4 Co-citation is known to have a low “recall” of clusters because only papers which have citation links within the 
data set and the defined time window can be classified. “Co-citation and bibliographical coupling offer cross 
sectional views given narrow, one year citing periods. Longitudinal coupling becomes effective only when wider 
periods are used. At the end of a time period documents will be linked through their references to earlier items, 
while at the beginning, linking will be through citations received.” (Small, 1997, p.278-279).   
5 In general, 40-50% of the total number of words in a document is removed. 
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frequency (see below) assume that the importance of a term is proportional to the 
number of documents the term appears in. Long documents usually have a much 
larger term set than short documents, which makes long documents more likely to be 
retrieved than short documents. Therefore, document length normalization is 
employed. 

• Computation of similarity coefficients: The similarity between any two documents (or 
between a query and a document) can subsequently be determined by the distance 
between vectors in a high-dimensional space. Word overlap indicates similarity. The 
most popular similarity measure is the cosine coefficient, which defines the similarity 
between two documents by the cosine of the angle between their two vectors. It 
resembles the inner product of the two vectors, normalized (divided) by the products 
of the vector lengths (square root of the sums of squares). 

 
The discriminative power of a term is determined by the well-known tf × idf model, in which tf 
denotes the term frequency and idf represents the inverse document frequency. Each document 
can be represented by an array of terms T and each term is associated with a weight determined 
by the tf × idf model. In general, the weight of term Tk in document Di, is estimated as follows:  
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where tfik is the number of occurrences of term Tk in Di, N is the number of documents in a given 
collection, and nk represents the number of documents containing term Tk. The document 
similarity is computed as follows based on corresponding vectors Di = (wi1, wi2, ..., wiT) and Dj = 
(wj1, wj2, ..., wjT): 
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Document similarity can be used to group a large collection of documents into a number of 
smaller clusters such that documents within a cluster are more similar than documents in 
different clusters. 
 
The vector space model provides an easy way to assess document similarities based on word 
matches. Note that different meaning of words – e.g., the bird “crane” and the “crane” on a 
construction site – cannot be detected. This is known as the "vocabulary mismatch problem" the 
solution of which requires methods that examine the context of words such as Latent Semantic 
Analysis (see section 4.1.2); Lexical Chaining, a notion derived from work in the area of textual 
cohesion in linguistics (Halliday & Hasan, 1976); or the automatic discovery of vocabulary and 
thesauri (Mostafa, Quiroga, & Palakal, 1998). 
 
Different applications of the vector space model are presented in (Salton, Allan, & Buckley, 
1994; Salton, Allan, Buckley, & Singhal, 1994; Salton & Buckley, 1988, 1991; Salton et al., 
1975). For a critical analysis of the vector space model for information retrieval consult 
(Raghavan & Wong, 1986).  
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4 ENABLING TECHNOLOGIES  
This section describes enabling techniques with regard to the analysis and visualization of 
knowledge. In particular, we describe methods that are generally used to create (interactive) 
visualizations of knowledge domains.  
 
Subsection 4.1 will introduce dimensionality reduction techniques that can be applied to 
represent n-dimensional data by a small number of salient dimensions and thus to display 
multivariate data on the two-dimensional surface of either paper or computer screen. Several of 
these algorithms produce a 2-D or 3-D spatial layout in which similar objects are close to one 
another. This process is also called ordination. Cluster analysis, presented in subsection 4.2, can 
be used to further group similar objects together, and to determine category boundaries and 
labels. Some of the algorithms presented in subsection 4.1 generate a document-by-document 
similarity matrix that can be visualized by spatial configuration algorithms, see subsection 4.3. 
Last but not least, subsection 4.4 presents the application of interaction and distortion techniques 
that aim to solve the second information communication problem – to display large amounts of 
data must be displayed in a limited space with limited resolution. For each technique we will 
give a general description, discuss its value for visualizing knowledge domains, and give 
references to further reading and code if available. We conclude with a general comparison of 
different techniques. 
 
4.1 Dimensionality Reduction Techniques 
Dimensionality reduction is an effective way to derive useful representations of high-
dimensional data. This section reviews a range of techniques that have been used for 
dimensionality reduction, including Eigenvalue/Eigenvector decomposition, Factor Analysis 
(FA), Multidimensional Scaling (MDS), Pathfinder Network Scaling (PF), and Self-Organizing 
Maps (SOMs).6 
 
4.1.1 Eigenvalue/Eigenvector Decomposition 

Eigenvalue/Eigenvector decomposition is a technique that has been widely used in scientific 
computation. Given an N × N matrix A, if there exist a vector v and a scalar value λ such that Av 
= λv. The vector v is an eigenvector, and the scalar value λ is a corresponding eigenvalue. 
Eigenvalue/Eigenvector decomposition is commonly used to reduce the dimensionality of a 
high-dimensional space while its internal structure is preserved. A related technique is called 
singular value decomposition (SVD), which is used in Latent Semantic Analysis (see sction 
4.1.4). 
 
Given a collection of points in a high-dimensional space, the eigenvalues of the covariance 
matrix reveal the underlying dimensionality of the space. Eigenvector analysis techniques 
encompass Principal Components Analysis (see section 4.1.2) and Empirical Orthogonal 
Functional Analysis. Common features of these eigenvalue problems are (1) the number of 

                                                           
6 Principal component analysis is used in Eigenvalue and factor analysis. However, Eigen solutions can give 
coordinates for each document, while a factor analysis doesn’t. 
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eigenvalues required is small relative to the size of the matrices and (2) the matrix systems are 
often very sparse or structured. 
 
Sandia’s VxInsight has the option of using an eigenvalue solver (Davidson, Hendrickson, 
Johnson, Meyers, & Wylie, 1998). However, in practice this solution, while mathematically 
robust, does not necessarily place dissimilar objects far apart and does not tend to produce 
discrete clusters.  
 
4.1.2 Factor Analysis and Principal Components Analysis  

The term Factor Analysis (FA) was first introduced by Thurstone (1931). Factor analysis is a 
multivariate exploratory technique that can be used to examine a wide range of data sets. Primary 
applications of factor analytic techniques are: (1) to reduce the number of variables and (2) to 
detect structure in the relationships between variables, or to classify variables. Therefore, factor 
analysis is applied as a data reduction or structure detection method. Contrary to other methods 
such as LSA, the factors can often be interpreted. 
 
A key method in factor analysis is Principal Component Analysis (PCA), which can transform a 
number of (possibly) correlated variables into a (smaller) number of uncorrelated variables called 
principal components. The first principal component accounts for as much of the variability in 
the data as possible, and each succeeding component accounts for as much of the remaining 
variability as possible. An advantage of using factor analysis over traditional clustering 
techniques is that it does not force each object into a cluster. Objects can be classified in multiple 
factors, thus preserving an important type of phenomenon: truly important work is often 
universal.  
 
There are many excellent books on factor analysis such as (Basilevsky, 1994; Gorsuch, 1983; 
Harman, 1976). PCA has been routinely used by information scientists, especially in author co-
citation analysis (Chen & Carr, 1999; McCain, 1990, 1995; Raghupathi & Nerur, 1999; White & 
McCain, 1998). PCA was also employed in SPIRE (Hetzler, Whitney, Martucci, & Thomas, 
1998; Wise, 1999; Wise et al., 1995), using a context vector similar to those constructed in LSA. 
 
4.1.3 Multidimensional Scaling  

Multidimensional Scaling (MDS) attempts to find the structure in a set of proximity measures 
between objects (Kruskal, 1977). This is accomplished by solving a minimization problem such 
that the distances between points in the conceptual low-dimensional space match the given 
(dis)similarities as closely as possible.  
 
The result is a least-squares representation of the objects in a lower (often 2-dimensional) space. 
The MDS procedure is as follows:  

• All objects and their distances are determined. 
• A goodness-of-fit measure called stress is maximized to produce a scatterplot of the 

objects in a low-dimensional space.  
• The dimensions are interpreted, keeping in mind that the actual orientations of the 

axes from the MDS analysis are arbitrary, and can be rotated in any direction. In 
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addition, one can look for clusters of points or particular patterns and configurations 
(such as circles, manifolds, etc.).  

 
The real value of MDS is that it can be used to analyze any kind of distance or similarity matrix. 
These similarities can represent people's ratings of similarities between documents, similarity 
between objects based on co-citations, etc. Due to computational requirements, only small data 
sets can be processed with MDS. Additionally, no relationship data (links) can be displayed. 
There are numerous texts available for further reading (Borg & Groenen, 1996; Joseph Kruskal, 
B., 1964; Joseph B. Kruskal, 1964; Kruskal & Wish, 1984). KYST is a flexible Fortran program 
developed by Kruskal, Young, and Seery for MDS which is available on the Internet.7,8 

 
A long acknowledged major weakness of MDS is that there are no quick and fast rules to 
interpret the nature of the resulting dimensions. In addition, analysts often need more local 
details and more explicit representations of structures. An MDS configuration is limited in 
meeting these needs. The use of Pathfinder Network Scaling technique and Pathfinder networks 
provide users with additional local details and explicit representations of structures than MDS 
configurations (see section 4.1.5).  
 
MDS has been one of the most widely used mapping techniques in information science, 
especially for document visualization (Chalmers, 1992), author co-citation analysis (White & 
McCain, 1998), document analysis (Hetzler et al., 1998), science mapping (Small, 1999b), and 
visualizing group memories9 (McQuaid, Ong, Chen, & Nunamaker, 1999), and performance 
assessment (Noyons, Moed, & Van Raan, 1999) to name just a few. 
 
Recently, nonlinear MDS approaches have been proposed that promise to handle larger data sets. 
Examples are the global geometric framework for nonlinear dimensionality reduction named 
Isomap10 proposed in (Tenenbaum, de Silva, & Langford, 2000) and nonlinear dimensionality 
reduction by locally linear embedding proposed by (Roweis & Saul, 2000). Both techniques have 
not been applied to the visualization of knowledge domains yet. 
 
4.1.4 Latent Semantic Analysis 

Latent Semantic Analysis (LSA), also called Latent Semantic Indexing (LSI), was developed to 
resolve the so-called vocabulary mismatch problem (Deerwester, Dumais, Landauer, Furnas, & 
Harshman, 1990; Landauer, Foltz, & Laham, 1998). LSA handles synonymy (variability in 
human word choice) and polysemy (same word has often different meanings) by considering the 
context of words. It uses an advanced statistical technique, singular value decomposition (SVD), 
to extract latent terms. A latent term may correspond to a salient concept that may be described 
by several keywords, for example, the concept of human-computer interaction. The procedure is 
as follows: 

• Representative samples of documents are converted to a matrix of 
title/authors/abstract words by articles. Cell entries are word frequencies in the 
title/authors/abstract of a given document.  

                                                           
7 http://elib.zib.de/netlib/mds/kyst.f.  
8 http://elib.zib.de/netlib/mds/kyst2a_manual.txt 
9 See http://ai.bpa.arizona.edu/go/viz/mds.html for an online demo. 
10 http://isomap.stanford.edu/ 
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• After an information theoretic weighting of cell entries, the matrix is submitted to 
singular value decomposition (SVD). 

• SVD constructs an n-dimensional abstract semantic space in which each original 
word is presented as a vector.  

• LSA's representation of a document is the average of the vectors of the words it 
contains independent of their order.  

 
Construction of the SVD matrix is computationally expensive. There are also cases in which the 
matrix size cannot be reduced effectively. Yet, an effective dimensionality reduction helps to 
reduce noise and automatically organizes documents into a semantic structure more appropriate 
for information retrieval. This is a prime strength of LSA – once the matrix has been calculated, 
retrieval based on a user’s query is very efficient. Relevant documents are retrieved, even if they 
did not literally contain the query words. The LSA matrix can also be used to calculate term-by-
term or document-by-document similarities for use in other layout routines. 
 
There are numerous LSA web resources including the Telcordia (formerly BellCore) LSI page11, 
a web site at the University of Colorado12, or the University of Tennessee13. SVDPACKC14 
(Version 1.0) developed by Michael Berry comprises four numerical (iterative) methods for 
computing the singular value decomposition of large sparse matrices using double precision 
ANSI Fortran-77. The General Text Parser15 (GTP), developed by Howard, Tang, Berry, and 
Martin at the University of Tennessee, is an object-oriented (C++) integrated software package 
for creating data structures and encoding needed by information retrieval models.  
 
LSA has been used in Generalized Similarity Analysis (Chen, 1997b, 1999b), StarWalker (Chen 
& Paul, 2001), and the LVis - Digital Library Visualizer (Katy Börner, 2000; Börner, Dillon, & 
Dolinsky, 2000) visualizations, among others. LSA has also been used by Porter and colleagues 
for technology forecasting (Zhu & Porter, 2002). 
 
4.1.5 Pathfinder Network Scaling 

Pathfinder Network Scaling is a structural and procedural modeling technique which extracts 
underlying patterns in proximity data and represents them spatially in a class of networks called 
Pathfinder Networks (PFnets) (Schvaneveldt, 1990). Pathfinder algorithms take estimates of the 
proximities between pairs of items as input and define a network representation of the items that 
preserves only the most important links. The resulting Pathfinder network consists of the items 
as nodes and a set of links (which may be either directed or undirected for symmetrical or non 
symmetrical proximity estimates) connecting pairs of the nodes. Software for Pathfinder 
Network Scaling is available for purchase.16  
 

                                                           
11 http://lsi.research.telcordia.com/ 
12 http://lsa.colorado.edu/ 
13 http://www.cs.utk.edu/~lsi/ 
14 http://www.netlib.org/svdpack/ 
15 http://www.cs.utk.edu/~lsi/soft.html 
16 http://www.geocities.com/interlinkinc/home.html 
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The essential concept underlying Pathfinder networks is pairwise similarity. Similarities can be 
obtained based on a subjective estimation or a numerical computation. Pathfinder provides a 
more accurate representation of local relationships than techniques such as MDS. 
 
The topology of a PFNET is determined by two parameters q and r and the corresponding 
network is denoted as PFNET(r,q). The q-parameter constrains the scope of minimum-cost paths 
to be considered. The r-parameter defines the Minkowski metric used for computing the distance 
of a path. The weight of a path with k links is determined by weights w1, w2, ..., wk of each 
individual link as follows: 
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When a PFnet satisfies the following three conditions, the distance of a path is the same as the 
weight of the path:  

1. The distance from a document to itself is zero. 
2. The proximity matrix for the documents is symmetric; thus the distance is 

independent of direction. 
3. The triangle inequality is satisfied for all paths with up to q links. If q is set to the 

total number of nodes less one, then the triangle inequality is universally satisfied 
over the entire network. 

 
The number of links in a network can be reduced by increasing the value of the r or q parameter. 
The geodesic distance between two nodes in a network is the length of the minimum-cost path 
connecting the nodes. A minimum-cost network (MCN), PFnet(r=∞, q=n-1), has the least 
number of links. 
 
AuthorLink and ConceptLink17 developed by Xia Lin and colleagues enable to create interactive 
author co-citation analysis maps based on PFNet or Self Organizing Maps (White, Buzydlowsky, 
& Xia, 2000). 
 
Pathfinder Network Scaling is used in Generalized Similarity Analysis (GSA) a generic 
framework for structuring and visualizing distributed information resources (Chen, 1997a, 
1998a, 1998b, 1999a). The original version of the framework was designed to handle a number 
of intrinsic interrelationships in hypertext documents, namely hypertext linkage, content 
similarity, and browsing patterns. GSA is based on the notion of virtual link structures to 
organize its structural modeling and visualization functionality. Virtual link structures are in turn 
determined by similarity measurements defined between a variety of entity types, for example, 
                                                           
17 http://cite.cis.drexel.edu/  
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document-to-document similarity, author-to-author similarity, and image-to-image similarity. 
Not only can one extend similarity measurements to new entity-entity relationships, but one can 
also integrate different similarity measurements to form a new network of entities. For example, 
interrelationships between hypertext documents can be defined based on a combination of 
hypertext connectivity, word-occurrence-based similarity, and traversal-based similarity. The 
generic framework of GSA led to several subsequent extensions to deal with a diverse range of 
data, including co-citation networks and image networks. 
 
The use of Pathfinder networks in GSA reduces the excessive number of links in a typical 
proximity network and therefore improves the clarity of the graphical representations of such 
networks. The extensibility and flexibility of Pathfinder networks have been demonstrated in a 
series of studies along with a range of other techniques. Some recent examples include 
StarWalker for social navigation (Chen, Thomas, Cole, & Chennawasin, 1999), trailblazing the 
literature of hypertext (Chen & Carr, 1999), author co-citation analysis (Chen, 1999b), and 
visualizations of knowledge domains (Chen & Paul, 2001).  
 
4.1.6 Self-Organizing Maps  

One of the most profound contributions made by artificial neural networks to information 
visualization is the paradigm of self-organizing maps (SOMs) developed by Kohonen (Deboeck 
& Kohonen, 1998; Kaski, Honkela, Lagus, & Kohonen, 1998; Kohonen, 1985; Kohonen et al., 
2000). During the learning phase, a self-organizing map algorithm iteratively modifies weight 
vectors to produce a typically 2-dimensional map in the output layer that will exhibit as best as 
possible the relationship of the input layer.  
 
SOM maps appear to be one of the most promising algorithms for organizing large volumes of 
information. However, they have some significant deficiencies, many of which are discussed in 
(Kohonen, 1995). These deficiencies comprise the absence of a cost function, and the lack of a 
theoretical basis for choosing learning rate parameter schedules and neighborhood parameters to 
ensure topographic ordering. There are no general proofs of convergence, and the model does not 
define a probability density. A Self-Organizing Map Program is available from the Kohonen 
Neural Networks Research Centre, Helsinki University of Technology18. 
 
SOM maps have been used to map millions of documents from over 80 Usenet newsgroups19 and 
to map the World-Wide Web. Xia Lin was the first to adopt the Kohonen SOM for information 
visualization (Lin, 1997; Lin, Soergel, & Marchionini, 1991) to document spaces. His Visual 
SiteMaps20 visualized clusters of important concepts drawn from a database.  
 
ET-Maps were developed in 1995 by Hsinchun Chen and his colleagues in the Artificial 
Intelligence (AI) Lab at the University of Arizona21. They constitute a scalable, multi-layered, 
graphical SOM approach to automatic categorization of large numbers of documents or web sites 
(Chen & Rada, 1996; Chen, Schuffels, & Orwig, 1996). The prototype was developed using the 
Yahoo! Entertainment sub-category (about 110,000 homepages); hence the name ET-Map.  
                                                           
18 http://www.cis.hut.fi/research/som_pak/ 
19 http://websom.hut.fi/websom 
20 http://faculty.cis.drexel.edu/sitemap/ 
21 http://ai.bpa.arizona.edu/ 
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ET-Maps are category maps that group documents that share many noun phrase terms together in 
a neighborhood on a 2-D map. Each colored region represents a unique topic that contains 
similar documents. The size of a subject region is related to the number of documents in that 
category such that more important topics (if importance can be correlated to counts) occupy 
larger regions. Neighborhood proximity is applied to plot “subject regions” that are closely 
related in terms of content, close to each other on the map. ET-Maps show an “up-button” view 
of an information space to provide the user with a sense of the organization of the information 
landscape, e.g., what is where, the location of clusters and hotspots, and what is related to what. 
ET-Maps are multi-layer maps, with sub-maps showing greater informational resolution through 
a finer degree of categorization.  
 
Focus+context techniques22 have been used to display a large SOM effectively within a limited 
screen area (Yang, Chen, & Hong, 1999). Usability studies indicate that users tend to get lost 
when browsing multi-level SOM maps and continued to prefer to use a conventional text-based 
alphabetic hierarchy (Chen, Houston, Sewell, & Schatz, 1998). Today, ET-Maps come with two 
panels. The left panel is a “Windows Explorer like” interface that presents an alphabetic display 
of the topic hierarchy generated, while the right panel is the graphical display of the SOM output. 
On the left panel, a user can click on any category of interest and the system displays its sub-
categories beneath. At the same time, those sub-categories are also displayed on the right panel, 
where the spatial proximity equals the semantic proximity. In addition, colors are employed to 
indicate how many layers a user can go down within a certain category. A working demo of ET-
Maps can be explored at the AI Lab's website.23 ET-Maps and Cartographic SOM Maps are 
discussed further and exemplified in section 6. 
 
Multi-SOMs are a multi-maps extension of SOMs. An automatic way of naming the clusters to 
divide the map into logical areas, and a map generalization mechanism are introduced by 
(Polanco, Francois, & Lamirel, 2001), who also discuss the application potential of Multi-SOMs 
for visualization, exploration or browsing, and scientific and technical information analysis.  
 
4.2 Cluster Analysis 
The term cluster analysis (CA) was first used by Tryon (1939). Cluster analysis encompasses a 
number of different classification algorithms that aim to organize a “mountain” of information 
into manageable, meaningful piles, called clusters.  
 
A clustering problem can be defined by a set of objects (e.g., documents) and a vague description 
of a set A. The goal of clustering is to divide the object set into objects belonging to A and a 
second set not in A. In this clustering problem, one first needs to determine what features are 
relevant in describing objects in A (intra-cluster similarity) and second, what features distinguish 
objects in A from objects not belonging to A (inter-cluster similarity).  
 
Alternatively, a cluster problem can be formulated by a set of objects and a similarity or distance 
function. Here, the goal is to divide the object set into number of sub-sets (clusters) that best 

                                                           
22 See section 4.4.3. 
23 http://ai3.bpa.arizona.edu/ent/entertain1/ 
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reveal the structure of the object set. These can take the form of partitions or a hierarchically 
organized taxonomy. 
 
Clusters should be highly internally homogenous (members are similar to one another) and 
highly externally heterogeneous (members are not like members of other clusters). Thus, the aim 
is to maximize intra-cluster similarity and minimize inter-cluster similarity. This can be 
formulated in terms of a utility measure that contrasts the sum of within-cluster similarities wSim 
by the sum of between-cluster similarities bSim: 
 

utility  = wSim / (wSim + bSim). 
 
Given alternative partitions the one that shows the highest utility is selected. 
 
Clustering algorithms can be distinguished based on a number of features such as unsupervised 
or supervised, divisive or agglomerative, incremental or non-incremental, deterministic or non-
deterministic, hierarchical or partitioning, iterative or non-iterative, single link, grouped average, 
or complete link clustering. Interestingly, no clustering algorithm has been shown to be 
particularly better than others when producing the same number of clusters (Hearst, 1999). 
However, experience demonstrates that some choices seem to fit some kinds of data better than 
others (e.g., correlation and complete linkage works very well for our ACA/JCA data) and there 
have been “bakeoffs” between clustering approaches (comparing single link, complete link, 
Ward's trace, centroid, etc.) that suggest that some approaches are more “reliable” than others for 
generic data sets. An excellent review of clustering algorithms can be found in (Han & Kamber, 
2000). 
 
In IV, clustering techniques are frequently applied to group semantically similar objects so that 
object set boundaries can be presented. The automatic assignment of cluster labels is yet another 
topic of high relevance for information visualization. For example, work by (Pirolli, Schank, 
Hearst, & Diehl, 1996) automatically computes summaries of the contents of clusters of similar 
documents providing a method for navigating through these summaries at different levels of 
granularity.  
 
4.3 Spatial Configuration 
Attributes of a data set can often be cast in the form of a similarity or distance matrix. Ordination 
techniques such as triangulation or force directed placement take a set of documents, their 
similarities/distances, and parameters and generate a typically 2-dimensional layout that places 
similar documents closer together and dissimilar ones further apart. 
 
4.3.1 Triangulation  

Triangulation is an ordination technique that maps points from an n-dimensional space into a 
typically two-dimensional one (Lee, Slagle, & Blum, 1977). It starts by placing a randomly 
selected point at the origin of the coordinate system. Next, the most similar object is determined 
and the second object is placed at a specified distance from the first object. The location of the 
third object is defined by the distance to the subsequent two objects (triangulation). 
Subsequently, the notion of repulsion from the origin is used to select the quadratic solution 
furthest from the origin – the spatial layout grows outwards. 
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Compared to classical ordination methods, triangulation is computationally inexpensive. The 
resulting layouts exactly represent the distances between single data points but lack global 
optimization.  
 
Triangulation was used by Henry Small in the context of information visualization (Small, 
1999b). His Map of Science is a series of nested maps showing the multi-dimensional landscape 
of science at five levels of aggregation.  
 
4.3.2 Force Directed Placement  

Force Directed Placement (FDP) can be used to sort randomly placed objects into a desirable 
layout that satisfies the given similarity relations among objects as well as aesthetics for visual 
presentation (symmetry, non-overlapping, minimized edge crossings, etc.) (Battista, Eades, 
Tamassia, & Tollis, 1994; Fruchterman & Reingold, 1991). FDP views nodes as physical bodies 
and edges as springs (or weighted arcs) connected to the nodes providing forces between them. 
Nodes move according to the forces on them until a local energy minimum is achieved. In 
addition to the imaginary springs, other forces can be added to the system in order to produce 
different effects. Many visual examples of these force models can be found in (Battista et al., 
1994).  
 
The FDP method is easy to understand and implement. However, it can be very slow for large 
graphs – in each iteration step the forces between all nodes have to be computed and considered 
to optimize the spatial layout. Modifications to a traditional force-directed approach have been 
made in the VxInsight ordination algorithm (Davidson, Wylie, & Boyack, 2001), VxOrd, and 
have resulted in a dramatic increase in computational speed. VxOrd accepts pairwise scalar 
similarity values as the arc weights, employs barrier jumping to avoid trapping of clusters in 
local minima, and uses a density grid in place of pairwise repulsive forces to speed up execution. 
Computation times are thus order O(N) rather than O(N2). Another advantage of the VxOrd 
algorithm is that it determines the number and size of clusters automatically based on the data 
input. Plus, rather than placing objects in discrete (round) clusters, VxOrd often gives elongated 
or continuous structures (which look like ridges in a landscape visualization) that bridge multiple 
fields. The VxOrd FDP does not accommodate a continuous stream of updated data, as do some 
other FDP’s. 
 
Semantic Treemaps, recently proposed by (Feng & Börner, 2002), are another option to apply 
FDP to handle large data sets. Semantic tree maps apply clustering techniques to organize 
documents into clusters of semantically similar documents. Subsequently, the tree map approach 
(Shneiderman, 1992) is utilized to determine the size (dependent on the number of documents) 
and layout of clusters. Finally, FDP is applied to the documents in each cluster to place them 
based on their semantic similarity. By breaking the data set into smaller chunks, the 
computational complexity of FDP is reduced at the cost of global optimality.  
 
HyperSpace, formerly Narcissus, used FDP to visualize hyperlinks among Web pages (Hendley, 
Drew, Wood, & Beale, 1995). FDP has been used on small data sets by Börner (Katy Börner, 
2000; Börner et al., 2000). Much larger literature (Boyack et al., 2002), patent (Boyack, Wylie, 
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Davidson, & Johnson, 2000), and even genomic (Kim et al., 2001) data sets have been clustered 
using the VxOrd FDP. 
 
4.4 Visualization and Interaction Design 

Given data objects and their spatial positions, visualizations need to be designed that can be 
intuitively understood and effectively and accurately explored by a human user. However, 
nobody should expect to understand a complex visualization in a few seconds. “The first 
response should be content related, not layout.”  (Eduard Tufte, 1998).  
 
Different frameworks and taxonomies to characterize information visualization techniques have 
been proposed. Most commonly used is Ben Shneiderman’s 1996 framework characterizing IV 
in terms of data types and user tasks to “sort out the prototypes [that currently exist] and guide 
researchers to new opportunities.”. The framework defines: 

• Data types comprising linear, planar, volumetric, temporal, multidimensional, tree, 
network, and workspace.24 

• Typology of Tasks such as overview, zoom, filter, details-on-demand, relate, history, 
and extract. 

• Visualizations resemble landscapes, circle plots, term plots, spotfires, starfields, etc. 
• Necessary features comprise interaction, navigation, detail on demand, etc. 

 
Subsequently, we review visualization as well as interaction design techniques and approaches. 
 
4.4.1 Visualization 

Visualization refers to the design of the visual appearance of data objects and their relationships. 
Well-designed domain visualizations: 

• Provide an ability to comprehend huge amounts of data on a large-scale as well as a 
small-scale. 

• Reduce visual search time (e.g., by exploiting low level visual perception).  
• Provide a better understanding of a complex data set (e.g., by exploiting data 

landscape metaphors). 
• Reveal relations otherwise not noticed (e.g., by exploiting perception of emergent 

properties). 
• Enable a data set to be seen from several perspectives simultaneously.  
• Facilitate hypothesis formulation. 
• Are effective sources of communication. 

 
Information visualization—the process of analyzing and transforming non-spatial data into an 
effective visual form—is believed to improve our interaction with large volumes of data (Card et 
al., 1999; Chen, 1999a; Gershon, Eick, & Card, 1998; Spence, 2000, 2001). One major key 
element of any successful visualization is to exploit visual perception principles. Books by Ware 
(2000) and Palmer (1999) provide excellent introductions to the subject. Visualizations help an 
increasingly diverse and potentially non-technical community to gain overviews about general 
patterns and trends and to discover hidden [semantic] structures. In addition, complex 

                                                           
24 Added in his textbook (Shneiderman, 1997). 
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visualizations of different viewpoints of thousands of data objects can greatly benefit from 
storytelling (Gershon & Ward, 2001). Storytelling and sharing is a powerful human strategy to 
teach effectively, to stimulate critical and creative thinking, and to increase awareness and 
understanding. Last but not least, the design and presentation of meaningful visualization are an 
art that requires years of expertise and diverse skills. However, the visual perception, story 
telling, and artistic aspects of visualization design are beyond the scope of this paper. 
 
4.4.2 Interaction Design 

Interaction design refers to the implementation of techniques such as filtering, panning, zooming, 
distortion, etc. to efficiently search and browse large information spaces.  
 
Ben Shneiderman at the University of Maryland proposed a mantra to characterize how users 
interact with the visualization of a large amount of information: Overview, Zoom-in (Filter), and 
Details on Demand (Shneiderman, 1996). Users would start from an overview of the information 
space and zoom in to the part that seems to be of interest, call for more details, and so on. The 
term “drill down” is also used to refer to processes equivalent to the “zoom in” part of the 
mantra. As for where to zoom in, theories such as optimal information foraging (Pirolli & Card, 
1999) appear to be a promising route to pursue.  
 
To issue meaningful queries or to exploit labeling of maps, users need a working knowledge of 
the subject domain vocabulary. Given the imprecise nature of human language, users frequently 
encounter the “vocabulary mismatch problem” (Chen et al., 1998; Deerwester et al., 1990).  
 
Although domain maps might provide searching facilities – e.g., documents matching a query are 
highlighted – one of their main purposes is to support browsing – i.e., the exploration of an 
information space in order to become familiar with it and to locate information of interest. 
“Browsing explores both the organization or structure of the information space and its content.” 
(Chen et al., 1998) It requires working knowledge of the applied knowledge organization 
(typically alphabetical, categorical, or hierarchical) and how to navigate in it. To ease navigation, 
numerous (real-world) visualization metaphors have been proposed and applied to help improve 
the understanding of abstract data spaces. Among them are 2-D “cartographic maps,” 2-D/3-D 
“category maps,” “desktop,” and 3-D “landscape” or “star field” visualizations.  
 
Paul Dourish and Matthew Chalmers identified three major navigation paradigms: spatial 
navigation – mimicking our experiences in the physical world; semantic navigation – driven by 
semantic relationships or underlying logic; and social navigation – taking advantage of the 
behavior of like-minded people (Dourish & Chalmers, 1994). Ideally information visualization 
facilitates and supports all three. 
 
4.4.3 Focus+Context 

The desire to examine large information spaces on small displays with limited resolution leads to 
the development of different focus and context techniques that enable users to examine local 
details without losing the global structure. Distortion-based techniques keep a steady overview. 
They enlarge some objects while simultaneously shrinking others. Ideally, the total amount of 
information displayed can be set flexibly and is constant even when users change their focuses of 
attention over several magnitudes. 
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Hyperbolic Trees, developed at Xerox PARC, were one of the very first focus and context 
techniques (Lamping, Rao, & Pirolli, 1995). Based on Poincare's model of the (hyperbolic) non-
Euclidean plane, the technique assigns more display space to a portion of the hierarchy while still 
embedding it in the context of the entire hierarchy. A 3-D hyperbolic viewer was developed by 
Tamara Munzner (1997; 1998).  
 
Hyperbolic trees are very valuable to visualize hierarchical structures such as file directories, 
Web sites, classification hierarchies, organization hierarchies, newsgroup structures, etc. While 
traditional methods such as paging (dividing data into several pages and displaying one page at a 
time), zooming, or panning show only part of the information at certain granularity, hyperbolic 
trees show detail and context at once. Although hyperbolic trees have not been used to visualize 
knowledge domains, they are commonly used with patent trees, and might be well suited to 
visualization of other hierarchical data. 
 
Fisheye views developed by George Furnas (1986) show a distorted view of a data set in an 
attempt to show local detail while maintaining global context. They mimic the effect of a wide-
range fisheye camera that shows the whole world, but have higher magnification in the focus 
center and shrink objects in relation to their distance to the center of focus. 
 
Two transformation options can be applied to the fisheye view: Cartesian and polar. For 
Cartesian transformation, all the regions are rectangular. Polar transformation regions can be 
arbitrarily shaped. The technique was improved by Sarkar and Brown (1994) with respect to 
layout considerations. Fisheye views have also been applied to improve ET-maps (Yang et al., 
1999). 
 
Fractal views, based on Mandelbrot’s fractal theory (1988), were first applied to the design of 
information displays by Hideki Koike (1993). They can be utilized to abstract displayed objects 
and to control the amount of displayed information based on semantic relevance by removing 
less important information automatically25. The fractal dimension, a measure of complexity, is 
used to control the total number of displayed nodes. 
 
Fractal Views have been applied to visualize huge hierarchies (Koike & Yoshihara, 1993) and to 
control the amount of information displayed in ET-Maps (Yang et al., 1999). 
 
Semantic zoom was also introduced by Furnas, and provides multiple levels of resolution. The 
view changes depending on the “distance” the viewer is from the objects. Semantic zoom was 
implemented in MuSE – Multiscale editor (Furnas & Zhang, 1998). It was also used in the 
Galaxy of News system that visualizes large quantities of independently authored pieces of 
information such as news stories (Rennison, 1994). 
 
Zoomable user interfaces, also called ZUIs, incorporate zooming as a fundamental aspect of 
their design. They place documents at absolute positions within a large zoomable space. 

                                                           
25 A linear clustering algorithm that groups objects according to the effects they have on the fractal dimension of the 
clusters was proposed in (Barbará & Chen, 2000). 
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Combined with animated navigation, this helps to give users a sense of structure and of where 
they are within a large information space. 
 
Pad++ is an environment for exploring zooming techniques for interfaces (Bederson et al., 
1996). Jazz is a Java 2 toolkit (http://www.cs.umd.edu/hcil/jazz/) developed by Ben Bederson 
and his colleagues at the University of Maryland. It supports the development of 2D structured 
graphics programs in general, and ZUIs in particular. 
 
4.5 Discussion 
Table 1 provides an overview of main features of the dimensionality reduction and ordination 
techniques of section 4. Among the features are scalability, computational cost26, interpretability 
of dimensions, dynamic or static layout, and the scale (global or local) to which it can optimally 
be applied. 
 

Table 1: Comparison of Techniques  
Technique Scalability Computation 

costs 
Interpret. Dim Layout Optimality scale 

Eigenvalue high high often static global 
FA/PCA limited medium often static global 
MDS limited medium often static  global 
LSA high high no  global 
PFNet medium medium no static Local or global - depends 

on parameter setting 
SOM high high no static global 
Triangulation medium medium -- static local 
FDP limited high -- dynamic local 

 
One exception to Table 1 is noted here. Although VxOrd is classified as a FDP algorithm, it does 
not act like FDPs as characterized in the table. Rather, it can scale to very large data sets 
(millions of similarity pairs, only limited by memory constraints), has very fast run times, and 
provides a static layout. Some ordination techniques have a very high computational complexity 
for large data sets. This complexity can be reduced at the cost of global optimality by breaking 
the data set into smaller chunks, ordinating each cluster, and compiling all clusters into a single 
map.  
 
Incrementally updated visualizations of domains based on incremental data updates, or perhaps 
continually updated visualizations based on sequential streaming of previously extracted data are 
very desirable for domain analysis see section 7 on Promising Avenues of Research. However, 
few current techniques (only some FDPs) can accommodate this type of data.  
 

                                                           
26 Most data analysis techniques are computationally expensive and are applied in a batch job. During run time the 
results of the data-mining step are used to interactively visualize a data set under a certain point of view. 
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5 THE ARIST DATA SET 
5.1 Data Retrieval 
To demonstrate the literature mapping process and to show the different measurements, layout 
routines, and visualization metaphors that may be used to visualize a knowledge domain in 
action, we have developed a data set – named ARIST data set - consistent with the subject of this 
chapter.  
 
First, data were retrieved from the Science Citation Index (SCI) and Social Science Citation 
Index (SSCI) by querying the titles, abstracts, and terms (ISI keywords and keywords plus) fields 
for the years 1977-July 27, 2001. Query terms and the number of records retrieved for each 
query are shown in Table 2. 
 

Table 2. Search terms used to generate the ARIST bibliographic data set. 

SEARCH TERM Number 
Topic Citation Analysis:  
citation analysis 596 
cocitation OR co-citation 177 
co-occurrence AND (term OR word) 77 
co-term OR co-word 52 
science map[ping] OR mapping science OR map[ping] of science 32 
Topic Semantics:  
semantic analysis OR semantic index OR semantic map 331 
Topic Bibliometrics:  
bibliometric 818 
scientometric 327 
Topic Visualization:  
data visualization OR visualization of data 275 
information visualization OR visualization of information 113 
scientific visualization 268 

 
Search terms included terms relevant to citation analysis, semantics, bibliometrics, and 
visualization to allow overlaps between those terms and fields to be shown. These four fields will 
be referred to extensively in the domain analyses of section 6. Of the 2764 unique articles 
retrieved, 287 were retrieved by more than one of the query terms. 
 
5.2 Coverage 

It is extremely important to choose an appropriate data source for retrieval, one whose data are 
likely to provide answers to the questions one wishes to answer using domain visualization. As 
an example, we discuss some limitations associated with the data for our ARIST data set. 
Numbers of articles retrieved by year are shown in Figure 2 for two categories: articles with 
terms (ISI keywords) and articles without terms. As is well known, ISI’s databases did not 
include either abstracts or terms prior to 1991. Thus, any maps based on either abstract text or 
terms will naturally exclude any articles prior to 1991. In addition, as shown in Figure 2, terms 
are available for only 71% of the articles published since 1991. (The lack of terms can be due to 
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several things; for instance, the journal may not require index terms from the authors, the journal 
may not supply terms to the database vendor, or the database vendor may choose not to index an 
article.) This makes the use of terms a less-than-optimum basis for mapping of these data. By 
contrast, abstracts are available for 84% of the post-1991 ARIST data set, making it a richer 
source of information. The percentages listed here apply only to this data set; we do not know the 

overall percentages of ISI records containing abstracts or terms.  
 
Book, journal and/or conference coverage can also be an issue. For instance, JASIS(T), 
Scientometrics, Journal of Information Science, Information Processing and Management, and 
the Journal of Documentation are key sources for visualization of science or knowledge domains 
(see Table 3). Yet the SCI only started coverage of these journals in the mid-1990s. (JASIS, 
Scientometrics, and JDoc were covered through the mid-1980s.) Queries to the SCI alone would 
not have provided sufficient coverage of the intended fields over this time period due to this lack 
of key journal coverage. Thus, we queried the SSCI as well, which covered those journals over 
the entire time period under investigation. Users of ISI’s Web of Science can conduct a search 
across all databases such as the SCI, SSCI, and the Arts and Humanities Citation Index (AHCI). 
 

Figure 2. Numbers of articles in the ARIST data set by year with terms (ISI keywords) or 
abstracts. 
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Table 3. Number of articles by journal in the ARIST set (10 or more articles per journal). 
Journal Categories # Papers 

Scientometrics LIS, CS 482
JASIS(T) LIS, CS 139
Journal of Information Science LIS, CS 51
Information Processing & Management LIS, CS 45
Lecture Notes in Computer Science CS 39
Research Policy Other 32
Journal of Documentation LIS, CS 31
Current Contents Other 30
Computers & Graphics CS 27
IEEE Transactions on Visualization and Computer Graphics CS 25
Bulletin of the Medical Library Association LIS 25
IEEE Computer Graphics and Applications CS 20
Medicina Clinica Other 20
Library & Information Science Research LIS 19
Social Studies of Science Other 18
Computer CS 16
Computer Graphics Forum CS 16
Libri LIS 16
Lecture Notes in Artificial Intelligence CS 15
Future Generation Computer Systems CS 15
International Forum on Information and Documentation LIS 15
Landscape and Urban Planning Other 14
Proceedings of the American Society For Information Science LIS 14
Proceedings of the ASIS Annual Meeting LIS, CS 14
Nachrichten Fur Dokumentation LIS 14
Library Trends LIS 13
Library Quarterly LIS 12
Science Technology & Human Values Other 12
Scientist LIS 12
Library and Information Science LIS 12
Omega-International Journal of Management Science Other 11
Computers & Geosciences CS 10
Zentralblatt Fur Bibliothekswesen LIS 10

 
Table 3 also shows that the data were dominated by journals jointly classified in the Library & 
Information Science (LIS) and Computer Science (CS) categories. Journals classified as “Other” 
in Table 3 come from a variety of categories, and suggest that the fields covered by our original 
queries are accessed by many other disciplines. 
 
For completeness, we include a distribution of the number of articles per field per year, along 
with average citation counts, for the ARIST data set (see Figure 3). This shows the dramatic 
increase in publishing in citation analysis and bibliometrics starting in the late 1980s, and the 
birth of the visualization field around the same time. It also shows that citation analysis articles 
were more highly cited that bibliometrics articles in the 1970s and 1980s, and that citation counts 
for all four fields have generally dropped throughout the 1990s. The most recent articles have, of 
course, been cited infrequently due to their young age.  
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Figure 3. Numbers of articles by field per year in the ARIST data set with average citation 
counts. Articles contribute to counts in more than one field if retrieved by queries from 
multiple fields. 

 
Data coverage issues also raise other questions such as: 

• Does lack of appropriate coverage cause significant distortions of domain 
visualizations? 

• If so, to what extent are the levels of quality of the final domain visualization and the 
analysis results undermined? 

• Are there ways to compensate for missing data? 
 
We have no ready answers to these questions, but suggest that they are important topics for 
discussion and further research. 
 
6 THE STRUCTURE OF THE SUBJECT DOMAIN 
As described in section 4, there are many mapping techniques available to work side by side on 
the same data and produce images of a domain from different perspectives. This allows us to 
stitch different pictures into a bigger one, which will reveal more insights about a domain than 
use of just a single technique. Multiple tools enhance the utility of domain visualization.  
 
6.1 Multiple Maps of the Domain 
The overall organization of the field of domain visualization (the overall subject of the ARIST 
data set) takes advantages of several emerging techniques. These techniques make it possible not 
only to decompose the domain according to a range of quantitative measures, but also to 
compare and contrast different pictures of the same domain.  
 
For example, in GSA and Starwalker, the use of factor analysis allows us to break down a 
domain network into components. A long recognized advantage of using factor analysis over 
traditional clustering techniques is that factor analysis does not force us to classify one object 
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into one cluster or the other; instead, it preserves an important type of phenomenon: truly 
important work is often universal. In SOM, the overall structure is depicted in forms of adjacent 
regions. Therefore, matches and mismatches between various versions of the domain maps will 
provide insights. VxInsight uses a landscape metaphor and portrays the structure of a literature 
space as mountain ridges of document clusters. The size of a cluster and its relative position in 
the layout provide valuable clues to the role of the cluster in the overall structure. Many different 
snapshots of the ARIST domain are explained in the remainder of this section. 
 
6.1.1 ARIST-GSA/StarWalker 

We generated an author co-citation analysis (ACA) map and a document co-citation analysis 
(DCA) map based on the ARIST data set using the four-step procedure described in (Chen & 
Paul, 2001).  
 
Data Preparation 
First, we selected authors whose work has received citations above a determined threshold for 
the author co-citation visualization. This selection was on the first-author only basis due to the 
availability of the information.27 Documents were selected similarly for the document co-citation 
visualization. The threshold parameter can be increased or decreased to control the number of 
authors or documents to be analyzed. Conventionally, the author citation threshold is set to 10. 
The intellectual groupings of these authors provide snapshots of the underlying knowledge 
domain. We computed the co-citation frequencies for these authors from a citation database, 
such as ISI’s SCI or SSCI. ACA uses a matrix of co-citation frequencies to compute a correlation 
matrix of Pearson correlation coefficients. Some researchers believe that such correlation 
coefficients best capture an author’s citation profile. 
 
Author Co-citation Analysis 
Second, we applied Pathfinder network scaling to the network that the correlation matrix defines. 
Although factor analysis is a standard ACA practice in traditional author co-citation analysis, 
MDS and factor analysis rarely appear in the same graphical representations. We then overlay 
the intellectual groupings that factor analysis identifies and the interconnectivity structure of a 
Pathfinder network. Authors with similar colors essentially belong to the same specialty and 
should appear as a closely connected group in the network. Therefore, we can expect to see the 
two perspectives converge in the visualization. 
 
Finally, we display the citation impact of each author atop the intellectual groupings. The height 
of a citation bar—which consists of a stack of color-coded annual citation sections—represents 
the magnitude of the impact. Sample author co-citation analysis maps are displayed in Figure 4 
and Figure 5.  
 
The factor analysis identified 10 factors whose eigenvalues are greater than one. These factors 
explain 90% of variance in the data. Each factor corresponds to a specialty in domain 
                                                           
27 This way of gathering data has the effect of privileging sole or first authors. Researchers who publish frequently 
in non-first author positions are thus not included even though they should be. Research has shown that first-author 
citation studies distort the picture in terms of most influential researchers. All-author citation counts should be 
preferred when visualizing the structure of research fields. The subfield structure tends to be just about the same for 
both methods (Persson, 2001; van Dalen & Henkens, 2001).  
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visualization. The largest three factors cumulatively explain 63% of variance. The following four 
specialties can be identified in the map, although the Pathfinder structure and the overlay factor 
analysis color scheme did not converge in this case – the sign of a heterogeneous subject domain: 

• mapping science: fundamentals, 
• social studies of science, 
• bibliometrics: quantitative analysis and evaluation, and 
• scholarly communication and co-citation analysis. 

 
The top-three specialties correspond to color-coded factors in the map: mapping science in red, 
social studies of science in green, and bibliometrics in blue. Remaining specialties are likely to 
be a combination of all the colors, and readers can cross-reference between factor analysis results 
and the map. 
 
The resultant author co-citation map contains 380 authors who have nine or more citations over 
the entire period between 1977 and 2001. Pathfinder network scaling limited the number of 
“salient” connections among these authors to 384. As usual, each author's node is colored by the 
factor loadings in the largest three specialties. An author co-citation map of a focused, coherent 
subject domain should demonstrate a considerable degree of conformance between the 
Pathfinder network structure and the factor analysis color patterns. However, this is not the case 
here, suggesting that science mapping constitutes a number of largely independent disciplines - 
as (Leydesdorff & Wouters, 2000) describes the status of scientometrics - this is pre-
paradigmatic. 

 
Figure 4. An overview of the author co-citation map (1977-2001), consisting of 380 authors 
with 9 or more citations. The map is dominated by the largest specialty of citation indexing. 
No strong concentration of other specialties are found, which implies the diversity of the 
domain. 
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Figure 5. A landscape view of the ACA map displayed in Figure 4. The height of a citation 
bar indicates the number of citations for the correspondent author. The spectrum of colors 
on each citation shows the time when citations were made. Authors with more than 50 
citations are displayed with semi-transparent labels. 

 
It is interesting to note that none of the four largest factors are centered in either visualization or 
semantics, which were two of the four groups comprising the ARIST data set. These two fields 
are relatively new and are not highly cited (see Figure 3). Thus, they are unlikely to be strong 
factors in an ACA-type analysis. 
 
Document Co-citation Analysis 
Given the flexibility of GSA, we also generated a document co-citation map based on the top 
sliced set of documents (see Figure 6 and Figure 7). As expected, there are as many as 15 factors 
of which eigenvalues are greater than one. These 15 factors cumulatively explained 90% of 
variance in the ARIST data. The largest four factors explained 56%. The following four 
specialties are relatively easy to identify in the map, corresponding to the largest four factors 
respectively: 

• mapping science: fundamentals, 
• social studies of science, 
• bibliometrics: quantitative analysis and evaluation, and 
• scholarly communication and co-citation analysis. 

As with the author co-citation maps, the top-three specialties in document co-citation maps also 
correspond to color-coded factors in the map: mapping science in red, social studies of science in 
green, and bibliometrics in blue. Remaining specialties are likely to be a combination of all the 
colors, and readers can cross-reference between factor analysis results and the map. 
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Figure 6. An overview of the document co-citation map of 394 articles with 10 or more 
citations. In this network, a number of tight clusters of documents are connected to an 
artery-like chain. Documents on the artery chain tend to be seminal works of connected 
clusters. For example, Diana Crane’s Invisible College (Crane, 1972) connects the scholar 
communication cluster to the artery chain. 
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Figure 7. A landscape view of the DCA map displayed in Figure 6 at distance. 
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Figure 8. A close-up view of a few clusters along the main artery in the DCA map. The 
height of a bar represents the number of citations to a publication. Labels indicate articles 
in clusters, for example, Small73 for an article of Small in 1973. Multiple publications 
within the same year are not distinguished at this level. For example, Small73 includes all 
Small’s publications in 1973. 
 
6.1.2 ARIST-ET-Map 

Bin Zhu and Hsinchun Chen of the University of Arizona visualized the ARIST data set using 
ET-Maps (see section 4.3.2). They trained 10*10 nodes using the ID/keyword data of the ARIST 
data set. At the end of the map creation process, each node is associated with a list of documents 
that are semantically similar to each other. In addition, a phrase was assigned to each node as its 
label and adjacent nodes that have the same label are grouped into one region or category. Thus, 
spatial proximity on the map indicates semantic proximity, meaning if two categories are close to 
each other on SOM map, they are also semantically similar to each other.  
 
A screenshot of the resulting ET-Map utilizing different visual encasings is shown in Figure 9. 
The top-level map shows 14 subject regions represented by regularly shaped tiles. Each tile is a 
visual summary of a group of documents with similar keywords. The tiles are shaded in different 
colors to differentiate them, while labels identify the subject of the tile. The subjects are also 
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listed on the left hand side together with a number in brackets telling how many individual 
documents it contains. In a typical browsing session a user would get an overview first, zoom 
into areas of interest, and access a particular document. Alternatively, a user can select a 
category of interest and the interface will display documents within that category.  
 

 
 

Figure 9. ET-Map of the ARIST data set using keywords.  Left is a list of labels of all 
categories. A user can select a category of interest and the interface will display documents 
within that category. 

 
Note that subject area citation analysis appears to be much larger than information visualization 
even though the citation analysis area has fewer documents. The size of the subject area is not 
necessarily related to the number of documents in an ET-map, but rather it denotes the amount of 
space between areas based on the number of nodes used to generate the map (see Figure 14b in 
section 6.2).  
 
6.1.3 ARIST-Cartographic-SOM Maps 

André Skupin, a geographer at the University of New Orleans, uses SOMs to generate domain 
visualizations in a cartographic fashion (Skupin, 2000; Skupin & Buttenfield, 1996). He used 
SOM_PAK to train a SOM (see section 4.3.2) based on the ID/keyword list of the ARIST data 
set and ArcGIS to generate the visualization. Labeling of clusters was done automatically within 
ArcGIS based on rules that were given to it regarding the link between attributes and label 
characteristics. 
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The map shown in Figure 10 aims at facilitating the use of the same skills traditionally associated 
with geographic maps. The underlying SOM consists of 2200 neurons (i.e. 40x55 nodes).28 A 
hierarchical clustering tree was computed for these neurons in order to allow scale-dependent 
exploration of the data set in a zoomable interface. In this particular visualization, only the 25-
cluster solution is shown.  
 
For each cluster, three label terms are computed, to better convey cluster content. Since the 
clusters were computed from the SOM itself, these labels indicate the potential topic or theme 
that one would expect to find with articles assigned to a particular cluster. In order to show the 
relative prominence of topics in the data set, the clusters were ranked according to the number of 
articles of this data set that were actually assigned to them. Clusters containing more articles 
appear larger and more prominent. 
 

 
Figure 10. Cartographic SOM map of ARIST data set. 
 
The terrain visualization expresses the degree to which the three highest-ranked components of 
each neuron dominate the neurons n-dimensional term vector. The purpose of this is to allow 
some judgment regarding the relative merits of the clustering solution that is overlaid. Higher 
elevation—i.e., percentage—indicates a very organized, focused, and coherent portion of the 
information space. These areas tend to be recognized and preserved by the cluster routine, which 
shows up nicely in this map. On the other extreme, there is the low-lying area, especially at the 
bottom right of the map. This indicates a lack of strong organization, a lack of distinct themes 
that would be recognized by the clustering routine. What is important here is that this does not 
                                                           
28 Thus, SOMs use a raster data model instead of a vector data model. 
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mean that there is necessarily a lack of “meaning” to this area. Rather, clusters containing it 
should be interpreted more cautiously. In this case, the main reason for the lack of organization is 
that most of the articles with 1-2 keywords are congregated here. In the 25-cluster solution this 
area is contained in a cluster whose labels (“Volume-Rendering” – “Information-Retrieval” – 
“Impact”) indicate a lack of coherence. Labels for this cluster are scaled correctly, but de-
emphasized by using a gray font color. The clustering solution and terrain visualization also 
indicate areas of transition and overlaps between different major topics. For example, note the 
cluster labeled “Information-Visualization” – “Pattern” – “Science” that is located between the 
larger clusters that are dominated by “Information Visualization” and “Science.” 
 
Various ways in which cartographic techniques could be used to improve information 
visualization are discussed in (Skupin, 2000) see also section 7. 
 
6.1.4 ARIST-VxInsight 

Sandia’s VxInsight was used to generate a number of document-based views of the ARIST data 
set using several different similarity functions. Four separate maps were created, all using the 
VxOrd FDP algorithm: 

1. A citation-based map using direct and co-citation linkages after the combined 
linkage method of Small (1997) using a direct:cocitation weighting factor of 20:1. 
Four different time segments are shown in Figure 11. 

2. A co-term map based on a cosine similarity using the ISI keywords (see Figure 
12, left). 

3. A map based on LSA over words extracted from the titles of articles. LSA was 
performed using SVDPACK (see section 4.1.2) to generate a document-by-
document similarity matrix. Only similarity values > 0.9 were used in the VxOrd 
FDP to generate the map shown in Figure 12, right. 

4. A co-classification map based a cosine similarity from the ISI journal 
classifications for each article (see Figure 13). 

 
In all three figures we used the following color scheme to indicate the various query terms that 
have been used to retrieve articles: white for citation analysis, co-citation, co-word, etc.; green 
for bibliometrics and scientometrics; blue for semantics; and magenta for visualization. Articles 
that match multiple query terms show multiple color markers. 
 
A quick perusal of the landscapes in Figure 11-Figure 13 shows that each reveals different 
information about the domain. The citation-based map in Figure 11 shows the relationship 
between the four fields for four different time segments. It is very easy to see the growth in the 
four fields – citation analysis, bibliometrics, semantics, and visualization – from a comparison of 
the figures. Citation analysis and bibliometrics (white and green dots) both have roughly equal 
numbers of papers during the first time segment (1977-82). More detailed analysis reveals that 
citation analysis was stronger in the late 1970s with bibliometrics picking up steam in the early 
1980s.  
 
The second segment (1983-88) shows bibliometrics as the larger field with some well defined 
clusters near the top of the map (labeled A). The semantics and visualization fields have not yet 
appeared (see Figure 3 as well). The third segment (1989-94) shows the formation of the 
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visualization field in three clusters (labeled B). The fact that these visualization clusters are 
formed at the edges of a citation map indicates that they are not well linked to the main body of 
citation and bibliometric work in the center of the map. Pictures showing the citation links (not 
shown here) confirm this and the fact that the visualization papers are not as highly cited as the 
citation and bibliometrics papers. This may be due to their relatively young age or perhaps may 
indicate that visualization researchers tend to cite other work less frequently. 
 
The fourth segment (1995-2000) shows semantic analysis as a new field (labeled C), which, like 
the visualization clusters, is not well linked to the main body of work. The citation analysis and 
bibliometrics fields each seem to be well defined, with some mixing of the two in certain 
clusters. While bibliometrics seemed to be growing faster than citation analysis in the middle 
two segments (late 80s and early 90s), comparison of the numbers of papers in the late 90s shows 
citation analysis to be gaining strength. There is also an interesting cluster (labeled D) in which 
citation analysis, bibliometrics, and visualization are mixed. Additional analysis on this and 
surrounding clusters will be given in section 6.2 (see Figure 14). 
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Figure 11. VxInsight citation maps of ARIST data for four different time segments. Circles 
indicate areas highlighted in the text. Dot color legend – WHITE: citation analysis, 
GREEN: bibliometrics, BLUE: semantics, MAGENTA: visualization.  
 
Figure 12 shows both the co-term and LSA maps. In the co-term map, citation analysis and 
bibliometrics articles are found mainly in the two large peaks at the right edge of the map, and 
seem to be more mixed than in the citation map of Figure 11. This could be simply because there 
are fewer clusters in the co-term map than in the citation map. However, it could also indicate a 
lack of specificity in using a term-based similarity, which leads to fewer clusters. The 
visualization and semantics papers form clusters of their own. There are a couple of peaks where 
the four fields are mingled in the center of the landscape. 
 
The map based on LSA over article titles shows some different features. The titles contained 
4,802 unique words, while abstracts contained 14,494 unique words. Here, the semantics papers 
are spread throughout the landscape. The visualization papers are also more mixed, and in 
several cases, they seem to bridge groups of citation analysis and bibliometrics articles. 
Bibliometrics and citation analysis articles, while appearing in the same clusters, are segregated 
within the clusters.  
 

   
Figure 12. VxInsight co-term (left) and LSA (right) maps of ARIST data 
 
The co-classification map in Figure 13 gives completely different information about the domain. 
This type of map has use in that one can clearly see the fields in which various groups of articles 
were published. The large peak with white and green dots (labeled A) is dominated by 
information and library sciences, which is where one would expect citation analysis and 
bibliometrics articles to be published. However, the white/green combination is also found in 
peaks comprised mainly of planning and development journals (labeled B), and general medicine 
(labeled C). Interestingly, a peak comprised mainly of articles in neuroscience-related journals 
(labeled D) contains articles from all four main areas of the ARIST data. 
 



 42

 
Figure 13. VxInsight co-classification map of ARIST data 
 
Note that the VxInsight tool is not just a way to take pictures of a domain visualization, but is a 
dynamic tool with which one can browse the information. Zoom, rotation, dynamic labeling 
(updated at each zoom step) based on different attributes such as titles, terms, etc., showing of 
citation or other linkages, filtering by date, detail on demand for individual articles, the ability to 
import different layouts, and a query facility are all features that enable a highly interactive 
exploration of the information space. 
 
6.2 Comparison of Maps 

The layouts of different [document] maps – Cartographic SOM map, ET map, VxInsight co-term 
map and LSA map – based on terms or words are compared here. Three of the maps were 
generated from an ID/term list, as shown in Table 4, and one was generated from LSA on article 
titles using VxOrd. Information about the citation map is also given in Table 4 for completeness. 
Numbers of articles appearing in each map, along with the number of ID/term pairs, citations, 
and/or similarity pairs (where known) used to generate the map, are also provided.  
 
There are some issues around using terms to generate domain maps, two of which we address 
here. First is the distinction between the use of words (single words), compound terms (typically 
noun phrases parsed from titles or abstracts and consisting of multiple words), and specific terms 
(terms as they appear in lists from bibliographic sources). In this analysis, we have used specific 
terms, which can be either single words or multi-word phrases. For instance, in the ARIST data, 
the terms SCIENTOMETRICS, SCIENTOMETRIC INDICATORS, and STATIONARY 
SCIENTOMETRIC INDICATORS all occur multiple times. Multi-word terms tend to be more 
specific, and thus might be expected to produce clusters based on specifics. Parsing to single 
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words from the small number of specific compound terms is an option that leads to a large 
number of more general terms that can be used to index documents. 
 

Table 4. Comparison of document maps. 

 A: 
Carto-SOM 

B: 
ET-map 

C: 
Co-term 

D: 
LSA 

 
Citation 

Basis id/term id/term cosine id/title words direct/cocite 
Years 1991-2001 1991-2001 1991-2001 1977-2001 1977-2001 
# papers 1446 1286  1446 2702 1626 
# ID/term pairs 5202 5202 5202   
# citations     4632 
# sim pairs   72664 48435 18258 

 
 
A second issue concerns the number of terms associated with each article. For the ARIST data, 
34% of the articles with terms have 1-3 terms, 42% of the articles have 4-7 terms, 17% of the 
articles have 8-10 terms, and the remaining 7% have 11 or more terms. Chung and Lee (Chung 
& Lee, 2001) showed that cosine measures tend to emphasize high-frequency terms. Andre 
Skupin’s experience (see section 6.1.3) with SOM is that articles with only 1 or 2 terms tend to 
either congregate in less dense areas of the SOM or in the middle of clusters, rather than at their 
edges.29 Boyack’s experience using a cosine co-term similarity with FDP is that articles with 
only 1 or 2 terms tend to be evenly distributed if the associated terms are specific, multi-word 
terms, but lie in the middle of large clusters if the associated terms are single word, general terms 
(e.g, SCIENCE).30 Different results may arise from different layout routines; nevertheless, a 
definitive study on the effects of term types, the generality of terms, and term distributions is 
needed.  
 
The term-based maps all show only a portion (around 50%) of the 2767 articles in the ARIST 
set. This is due to the lack of keywords for papers published prior to 1991, and to the lack of 
terms on 26% of the papers published since 1991. A total of 872 unique terms occurred more 
than once in the list of 5202 id/term pairs. 
 
The citation map retained a few more papers (1626), but missed 1141 others because there were 
no citation links between them and any other member of the set. The LSA map, if the entire 
document-by-document were used (3.83 million similarity values above the matrix diagonal), 
would have retained all 2767 articles. However, due to the size of the matrix, only similarities of 
0.9 or greater were used in ordination, and thus 65 articles were not retained in the map.  
 
Figure 14 compares the layouts of the four term or word based maps. There is much that is 
similar between these four layouts. In all four, citation analysis and bibliometrics (yellow and 
green dots) are found together, while visualization (magenta) and semantics (blue) are mostly by 
themselves. There are some areas in each map with some overlap between semantics and 
visualization, and some very small regions with overlap between all four areas. Thus, at a macro 
                                                           
29 Personal communication. 
30 Unpublished data. 
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level, the different layout techniques seem to give similar groupings from the term or word 
expressions. We have not done a neighborhood analysis to verify this statistically, but leave that 
to another time and study.  
 

 
Figure 14. Comparison of layouts of four different document maps based on terms or 
words. A: Cartographic-SOM (compare Figure 10), B: ET-Map (compare Figure 9), C: 
Co-term (compare Figure 12, left), D: LSA (compare Figure 12, right). Dot color legend – 
YELLOW: citation analysis, GREEN: bibliometrics, BLUE: semantics, MAGENTA: 
visualization. 

 
Figure 14 also makes clear the obvious visual differences between the layouts. The Cartographic 
SOM and ET-Maps each have more clusters than the co-term map (likely due to the parameters 
under which they were generated), while the LSA map shows more continuous structures. The 
three term-based layouts are shown in Figure 15 with strong co-term linkages (based on the 
cosine similarity) represented as lines. This view highlights more differences between the 
layouts. Intracluster linkages criss-cross the maps for the Cartographic-SOM and ET-Map, while 
there are few intercluster linkage trails for the co-term map. This suggests that, while the SOM-
based methods break the data into more clusters, and tend to fill the space much more uniformly, 
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perhaps fewer clusters and less efficient space-filling can be justified. The LSA map is not 
compared here since title words and terms give different levels of information (Qin, 2000). 
 

 
Figure 15. Strong co-term linkages based on cosine similarity for the three term-based 
document maps of Figure 14. 

 
We now provide a comparison of reference-based citation maps with maps based on similarities 
between terms or words. The area around cluster D of Figure 11 seemed to be of interest due to 
the overlap between citation analysis, bibliometrics, and visualization. Browsing of that cluster 
showed that the visualization papers were all related to visualization of neural networks, and that 
they appeared in that cluster with a large number of citation and bibliometrics studies on 
decision-support systems. Browsing near the cluster also revealed that different types of citation 
analysis seemed to be clustered by analysis type.  
 
The first panel of Figure 16 (citation map) shows the results of three queries to abstracts: author 
co-citation, co-word, and co-citation [NOT author co-citation]. The results of those queries lie in 
the clusters labeled A, B, and C, respectively, with very little scatter. Indeed the citation map 
portion of Figure 16 shows only a small portion of the overall citation map (compare Figure 11). 
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Browsing of individual articles confirmed that each cluster was comprised of articles where 
researchers used the technique central to the cluster. Identical queries were made to the 
Cartographic-SOM, co-term, and LSA maps, with the results shown in Figure 16. In these three 
maps, the query results are spread throughout the maps and are not associated with any discrete 
clusters. Thus, articles are clustered much better by technique when using references than when 
using term or title-based similarity measures. This is likely due to lack of consistent use of terms 
corresponding to techniques in either keyword lists or titles. We expect that maps based on 
similarities between words in abstracts would do a much better job of clustering by technique 
than do any of the measures shown here. 
 

 
Figure 16. Comparison of distinct fields on the citation map with their counterparts on the 
term or title-based maps. Legend – BLUE: author co-citation (ACA), GREEN – co-word 
analysis and Leximappe, MAGENTA: co-citation analysis. 
 
The analysis and layout comparisons presented here do not show that any one type of similarity 
method and layout are better than any other for producing domain visualizations. Rather, they 
show that trade-offs are involved and that the researcher should use the combination of similarity 
and layout techniques that are likely to aid in answering the questions at hand. Each researcher 
will, of course, have his or her favorite methods. We encourage all who are involved in domain 
visualization to broaden their horizons and expand the suite of methods that they use, to the 
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benefit of all who read and rely upon their work. Note also that this survey is largely derived 
from a quantitative approach. It is also important to take into account qualitative views. 
 
7 PROMISING AVENUES OF RESEARCH  
While working on this chapter the authors discussed a large and diverse number of potential 
ways to improve the generation of domain visualizations and their interpretation. In particular, 
we find the following to be of great interest: 

• Ways to increase the accessibility of domain visualizations for non-experts.  
• Utilizing domain visualization to help answer real-world questions. 
• Bringing together leading researchers in different fields that contribute to the 

visualization of knowledge domains to improve the dissemination of results. 
• Development of more robust, scalable algorithms. 

Promising avenues of research that address those interests are discussed below. 
 
Increasing the accessibility of domain visualizations for non-experts. Despite advances in 
visualization research, many non-expert users find the use of visualization tools to be unfamiliar 
and non-intuitive. Domain visualizations could greatly benefit from the incorporation of 
advanced visual perception (Ware, 2000); (Palmer, 1999) and cognitive principles into tools to 
aid the non-expert.  
 
In addition, it seems to be desirable and advantageous to compare existing and novel algorithms 
on existing data sets and to contrast the results with human data, see (K. Börner, 2000) for first 
results. Ultimately, visualizations that best fit cognitive user models will be easier to understand 
and use. 
 
Cartographic design considerations and specific techniques can enrich the design of domain 
visualizations in a number of ways. The value of using a geographic metaphor was first 
discussed in (Wise et al., 1995). Today, several geographers are involved in extending past work 
on geographic metaphors and primitives (Couclelis, 1998; Golledge, 1995) towards the 
development and testing of specific interfaces for spatialized browsing of non-geographic 
information (Fabrikant, 2000; Fabrikant & Buttenfield, 2001; Skupin & Buttenfield, 1996). 
Cartographic perspectives on information visualization are presented in (Skupin, 2000). The 
relevance of data structures and analytical tools common in geographic information systems is 
being investigated in (Skupin, 2001). 
 
Utilizing domain visualization to help answer real-world questions. We believe that 
visualizations of knowledge domains can help to assess scientific frontiers, to forecast research 
vitality, to identify disruptive events/technologies/changes, and to find knowledge carriers, etc. 
For example, (Schwechheimer & Winterhager, 1999, 2001) applied a co-citation analysis based 
method to identify and analyze highly dynamic, rapidly developing research fronts of climate 
research. They used journal profiles, co-citation maps, and actor profiles as information 
elements. Results by Nederhof and Noyons (1992) indicate that bibliometric assessment of 
research performance is potentially useful in humanities disciplines. Much of the work done with 
VxInsight has been for competitive intelligence purposes (Boyack et al., 2002). Multi-SOM 
maps have been proposed for a knowledge-oriented analysis on science and technology via 
knowledge indicators (Polanco et al., 2001). 
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New commercial applications are also being aimed at domain analysis. VantagePoint31 reads 
bibliographic data files from many different sources and automates such techniques as cross-
correlation analyses and factor analyses for purposes of technology assessment and opportunities 
analysis. Other products, such as SemioMap32 or Knowledgist33, use linguistic techniques, 
semantic analysis, Bayesian models, or ontologies to understand the content of unstructured 
textual sources, whether in local files or on the Internet. These products seek to replace the 
“hunt-and-peck” method of keyword search by the ability to browse the entire search space for 
relevant documents. Internet Cartographer34 is Inventix Software’s solution to information 
overload on the Internet. It combines advanced artificial intelligence techniques with 
sophisticated information visualization techniques to build maps of accessed documents, 
organized in a hierarchy of over 500 pre-defined categories.  
 
Recent work on so called “small world graphs” aiming at a graph theoretical analysis of the Web 
may turn out to be applicable to analyze and visualize bibliographic data and research networks 
as well. Work by Jon Kleinberg at Cornell University, and Prabhakar Raghavan and Sridhar 
Rajagopalan at IBM Almaden Research Center on “hubs” (documents which cite many other 
documents) and “authorities” (documents which are highly cited) (Kleinberg, 1999) could be 
used to identify excellent review articles and high quality papers respectively. It may also lead to 
improved measures to identify emerging research themes and communities based on authors of 
documents sharing some common theme.  

 
Bringing together leading researchers. We believe that research on visualizing knowledge 
domains could be sped up considerably if one or two well-understood and expert-verified 
domain analysis data sets, e.g. in the form of a TREC data set35, were made available for general 
use to rate different algorithms and visualization techniques. In addition, a centralized repository 
of data analysis and visualization software applicable to create domain visualizations would 
improve the dissemination of algorithmic knowledge, enable comparisons of algorithms, and 
save the time spent for re-implementing algorithms (Börner & Zhou, 2001). Assuming that 
ownership and privacy issues can be resolved, we believe that a data set and software repository 
would also boost creativity by easing access to existing work; consultation with others working 
on related topics; implementation of new (commercial) applications, which, in turn challenge the 
development and improvement of the algorithms; exploration of new ideas; and, last but not 
least, the dissemination of results to science (Shneiderman, 2000). The design of collaborative 
information visualizations that can be explored by multiple, potentially distributed users at the 
same time is also expected to improve collaborative data collection, access, examination, and 
management.  
 
Development of more robust, scalable algorithms. More robust semantic similarity measures 
and highly scalable ordination techniques are needed. Most current similarity generation and 
layout algorithms require hours or more to produce results. This has not been a deterrent to 

                                                           
31 http://www.thevantagepoint.com/ and http://tpac.gatech.edu/ 
32 http://www.semio.com/ 
33 http://www.invention-machine.com/ 
34 http://www.inventix.com/  
35 http://trec.nist.gov/data.html 
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domain researchers who spend a great deal of time analyzing the results of domain maps, but 
will prove a deterrent to a future generation of users who want quick answers from small 
literature sets (500 or fewer articles) that they can download in real-time. Examples of this new 
generation of systems are AuthorLink and ConceptLink36 by Xia Lin and colleagues, JAIR 
Space37 by Mark Foltz, or Star Walker38 by Chaomei Chen. 
 
Layout algorithms that give robust answers are also needed. By robust answers, we mean a 
layout that does not change significantly with slight or even modest perturbations to the input. 
Recent work by Davidson (Davidson et al., 2001) using VxOrd showed that some clusters will 
break up with the introduction of small amounts of noise (random changes to similarities of 2% 
or less), while other clusters retain their structure with the addition of large amounts of noise 
(order 10%). In cases where robustness cannot be achieved, analysis to quantify the robustness of 
individual clusters can be done to aid researchers in knowing how much confidence to place in 
their results. 
 
In the same way that the Web continually sprouts new pages, there is also a steady stream of new 
work in the scientific literature. Hence, research by Barabasi and his colleagues (Barabási & 
Albert, 1999; Barabási, Albert, & Jeong, 2000) on the development of algorithms that mimic the 
growth of the Web may be able to model the growth of scientific disciplines as well. Work on 
incremental ordination and layout algorithms is essential to visualize continually changing data. 
One advantageous feature of such algorithms is that they enable incremental update while 
preserving the main topology of the layout. Organic information design was first proposed by 
(Mackinlay, Rao, & Card, 1995) and applied recently by (Fry, 2000). It borrows ideas like 
growth, atrophy, responsiveness, homeostasis, and metabolism, and it applies them to design 
information visualization that one “can 'feed' data to, and watch how the data is digested.” 
(Dodge, 2001). 
 
Generative Topographic Mapping (GTM) (Bishop, Svensen, & Williams, 1998) is an alternative 
to SOMs in that it generates topographic maps. The model was developed at the Neural 
Computing Research Group, Aston University, UK39 and is a novel form of latent variable 
modeling, which allows general non-linear transformations from latent space to data space. For 
the purposes of data visualization, the mapping is then inverted using Bayes’ theorem, resulting 
in a posterior distribution in latent space. GTPs overcome most limitations of the self-organizing 
maps and might turn out to be a valuable method for the visualization of knowledge domains. 
 
The genomics and bioinformatics world has been the home to many algorithmic innovations in 
recent years, many of which could be applied to data analysis, clustering, and visualization. 
Research focus is on matching algorithms, scalability of clustering methods, effectiveness of 
methods for clustering complex shapes and types of data, high-dimensional clustering 
techniques, and methods for clustering mixed numerical and categorical data in large databases. 
Continuing research into eigenvector and matrix techniques, and parallel algorithms may also 
lead to advances in information science. 

                                                           
36 http://cite.cis.drexel.edu/  
37 http://www.infoarch.ai.mit.edu/jair/ 
38 http://www.brunel.ac.uk/~cssrccc2/ 
39 Papers, reports, software, demos etc. are available at http://www.ncrg.aston.ac.uk/GTM/ 
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In the 1960s and early 1970s Belver Griffith applied bibliometrics and behavioral measures to 
reveal disciplinary communication structures. Recent work by Sandstrom (2001) shows that 
universal principles such as prey-choice models from optimal foraging theory – developed by 
biologists in the 1970s – can be successfully applied in the bibliographic microhabitat to explain 
information seeking and use behavior. Sandstrom (1994) was among the very first to see scholars 
as subsistence foragers in a socioecological framework. Research by Pirolli and Card (1999) 
supports the claim that foraging theory can be extended to understand information foraging and 
the evolution of knowledge domains, and to improve their visualizations. 
 
Lastly we agree with Hjorland & Albrechtsen (1995) that information science in general and the 
visualization of knowledge domain in particular should be seen as a social rather than purely 
mental research area. This new view stresses the social, ecological, and purpose-oriented 
production and usage of knowledge. 
 
8 CONCLUSIONS 
Thank you for joining us on a long journey about the visualization of knowledge domains. 
We’ve gone through some history, the general process of generating domain maps, commonly 
used units and measures, specific techniques, and the application of several techniques to 
generate and compare diverse maps of the subject domain. 
 
Guided through these maps you learned that this research field is currently divided into a few 
major islands, some of which – e.g., information visualization and semantics islands – are 
isolated. However, there are some interesting connecting points that should be exploited in future 
work.  
 
We hope that our survey provides a starting point for researchers and practitioners to appreciate 
the richness and complexity of this fast evolving research field, to determine their own positions, 
to identify related work in other research areas, and to plan (interdisciplinary) collaborations and 
future work on promising applications. 
 
We believe that research aimed at visualizing knowledge domains can benefit from importing 
and incorporating research in other fields as identified in section 7 to vastly improve the 
readability and effectiveness of domain visualizations. It can also contribute to the development 
of science in general by exporting methods and approaches to identify related work by experts in 
relevant research areas, assess research vitality, identify evolving research fields, etc. We hope 
that the various snapshots and our interpretations of this dynamic and interdisciplinary field of 
study produced in this grand tour can lead to insights into the essence of the field as a whole and 
its promising future. 
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