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Is the intrinsic disorder of proteins the cause of the

scale-free architecture of protein–protein

interaction networks?
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In protein–protein interaction (PPI) networks certain topological properties appear to be recur-
rent: network maps are considered scale-free. It is possible that this topology is reflected in the
protein structure. In this paper, we investigate the role of protein disorder in the network topol-
ogy. We find that the disorder of a protein (or of its neighbors) is independent of its number of
PPIs. This result suggests that protein disorder does not play a role in the scale-free architecture
of protein networks.
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There is much current interest in the structure of bio-
logical networks, in particular, those focusing on their topol-
ogy [1]. Certain organizational properties appear to be a
recurrent feature of biological systems. A power-law prob-
ability distribution for the number of links adjacent to the
same node (degree) has been reported in systems as diverse
as protein folding [2], networks of metabolic reactions [3, 4],
and ecological food webs [5]. A power-law degree distribution
indicates that connectivity is quite heterogeneous on the
network, so that many nodes having just a few connections
coexist with a considerable number of nodes with many
connections (known as hubs). Scale-free networks are resi-
lient to random failures, but vulnerable to targeted attacks
against the most connected elements or hubs [6]. Network
topology is implicated in conferring robustness of network
properties, for example, in setting up patterns of cellular dif-
ferentiation in gene regulatory networks in the early devel-
opment of the fruit fly [7, 8], or in providing resistance to

mutation of environmental stress [9, 10]. Therefore, the
determination of the topology of a biological network has
become important for assessing the stability, function,
dynamics, and design aspects of the network [11].

Network topologies are determined using a variety of
sample methods, which are then used to infer the topology of
the whole network [12]. The application of these methodolo-
gies to protein–protein interaction (PPI) networks has
revealed that they are scale-free [13–18]. This architecture of
the PPI networks must be reflected in the protein structure
[19, 20]: What is the structural feature of hub proteins which
allows them to interact with a large number of partners?

Recently, Fernández and Berry [21] made an attempt to
answer this question. They examined the structure wrap-
ping, which protects a protein from water attack, in the PPI
network of Saccharomyces cerevisiae [13]. They found that
relaxing the structure of the packing interface increases the
number of binding interactions in a protein. However, this
study did not examine the correlation between the degree of
a protein (number of interactions) in a PPI network and the
extent of its overall wrapping deficiency. As a consequence,
the results of this study are of limited applicability for
understanding the architecture of a PPI network.

Fernández and Berry [21] have found that there is a direct
correlation between the number of hydrogen bonds that are
deficiently protected from water and the inherent structural
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disorder of a protein. Intrinsically disordered proteins do not
have specific 3-D structures [22, 23]; they exist in wide-
motion conformation ensembles both in vitro and in vivo [24,
25]. The intrinsically disordered regions of a protein can
provide flexible linkers between functional domains, which
facilitate binding diversity and can explain the existence of
protein hubs [19, 20]. Dunker et al. [19] have proposed two
roles for intrinsic disorder in PPI: (i) intrinsic disorder can
serve as the structural basis for hubs promiscuity and (ii)
intrinsically disordered proteins can bind to structured hub
proteins.

In this paper, we determine if there is a correlation be-
tween the number of interactions of a protein in a PPI net-
work and the disorder of the protein itself or that of its
neighbors.

We started downloading the PPI networks for Homo
sapiens (human), S. cerevisiae (yeast), Drosophila melanogaster
(fly), Caenorhabditis elegans (worm), and Escherichia coli (bac-
terium) from the Biomolecular Interaction Network Data-
base (BIND, http://bind.ca) [26]. The information collected
was cured using the low-throughput track of the database
and by filtering out redundant interactions. First, we carried
out a standard analysis of the five networks under con-
sideration. In Table 1, we list the main attributes of the net-
works: the number of nodes, the number of links, the aver-
age degree, and the diameter. The average degree reveals that
all networks are quite sparse; as a matter of fact, they are
fragmented in many components with most components
consisting of a single node. Due to the limited size of the
networks, a statistical analysis is meaningful only for the
largest systems. Figure 1 displays the degree distribution of
the human PPI network. The datapoints were obtained by
averaging the probability within logarithmic bins of degree,
to reduce fluctuations. The distribution looks quite skewed
with a tail approximately following a power law with expo-
nent 2.5.

Our aim is to address quantitatively the issue of the
existence of a correlation between the topological con-
nectivity of a protein, expressed by its degree k, and the dis-
order of the protein itself or that of its neighbors. We employ
the VL3 model [27] to predict intrinsically disordered regions
of protein sequences for the PPI networks under considera-
tion. The VL3 predictor is a feed-forward neural network al-
gorithm which uses attributes such as amino acid composi-
tions, average flexibility [28], and sequence complexity [29]

Table 1. PPI network properties

Species Nodes Links Average
degree

Diameter

Human 2758 3237 2.347 27
Yeast 881 1107 2.513 21
Fly 353 280 1.586 8
Worm 244 244 2.000 7
Bacterium 166 132 1.590 4

Figure 1. Degree distribution for the human PPI network. The
degree of a node corresponds to the number of interactions of a
protein. Note that the distribution is quite broad, spanning two
orders of magnitude in degree. The dashed line is a tentative
power law fit of the tail of the distribution: the exponent is 2.5.

for calculating the disorder score. The disorder score is a
value between 0 and 1. We calculate the number of dis-
ordered regions in a protein as those putative segments
which were of 10 or more residues in length with a disorder
score of 0.5 or greater. We estimate these segments, because
the increasingly recognized mechanism of interaction be-
tween intrinsically disordered proteins and their binding
partners is through molecular recognition elements. These
elements are typically located within disordered regions,
which provide enough physical space and flexibility to
accommodate access of a variety of potential partners,
thereby facilitating binding with multiple and diverse targets
[30–32].

We computed the standard Pearson correlation coeffi-
cient between the degree of all proteins of a network and
their disorder, as expressed by the disorder score and by the
number of disordered regions. The corresponding correla-
tion coefficients for the protein (node) degree versus disorder
score and protein (node) degree versus number of disordered
regions are listed in Table 2. They are all close to zero. This
result indicates the absence of correlations between the
number of interactions of a protein and its disorder coeffi-
cient, and between the number of interactions of a protein
and its number of disordered segments. We completed the
analysis by calculating the Pearson correlation coefficients
between the degree k of a protein and the average disorder of
its neighbors. The corresponding coefficients are listed in
Table 3, and they are again very close to zero, hinting at the
absence of correlations between the degree of the protein and
the average disorder of its neighbors.

We have as well investigated the relation between degree
and disorder, as the knowledge of the correlation coefficient
only gives a global indication on the correlation between two
variables. This type of analysis is particularly suitable for
large systems, as one ideally wishes to have a significant
number of datapoints for each degree value. Therefore, we
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Table 2. Pearson correlation coefficients between the degree of a
protein and its disorder: the latter is expressed by the
disorder score or by the number of disordered regions

Species Correlation coefficient
k-disorder

Correlation coefficient
k-disordered regions

Human 28.45212E-004 1.75295E-002
Yeast 3.80361E-002 7.76235E-002
Fly 7.10621E-003 2.88277E-002
Worm 21.18723E-002 26.00492E-002
Bacterium 5.15177E-002 0.11902

The degree of a node corresponds to the number of interactions
of a protein. The disorder coefficients are calculated using the
VL3 predictor [27].

Table 3. Pearson correlation coefficients between the degree of a
protein and the average disorder of its neighbors: the
latter is expressed by the disorder score or by the num-
ber of disordered regions

Species Correlation coefficient
k-disorder

Correlation coefficient
k-disordered regions

Human 2.27327E-002 4.00298E-002
Yeast 21.63826E-002 2.15817E-002
Fly 1.59666E-002 21.09563E-002
Worm 0.26913 21.15449E-002
Bacterium 7.39843E-002 0.11434

The degree of a node corresponds to the number of interactions
of a protein. The disorder coefficients are calculated using the
VL3 predictor [27].

present here the result of the analysis for the largest network
we have, i.e. the human PPI network. Figure 2 shows four
scatter plots between degree and disorder. To show the trend
of the plots, we averaged disorder within logarithmic bins of
degree. The resulting curves are essentially flat, which shows
that the disorder of a protein (or of its neighbors) is inde-
pendent of its degree, confirming the absence of correlation
we had derived from the examination of the correlation
coefficients.

In a recent paper, Haynes et al. [33] have reported that
hub proteins are more disordered than end proteins. They
have defined hub proteins as those that interact with ten or
more partners, while end proteins are those interacting with
only one partner. Although Haynes et al. [33] claim that
intrinsic disorder is a common feature of hubs proteins, it is
worth emphasising that the differences reported in the aver-
age disorder score are less than 11% with SD greater than
35% the average value. In this respect, we find that the cor-
relation they have reported is very small and compatible with
our findings.

From our analysis, we find that an increase in the dis-
order score or number of disordered regions of a protein
does not increase its topological connectivity (nor does the

Figure 2. Relation between disorder and degree for the human
PPI network. The two plots on the left show the variability with
degree of the disorder of a protein, with the latter being expres-
sed by the disorder score (top left) and by the number of dis-
ordered regions (bottom left). The two plots on the right show
how the average disorder of the neighbors of a protein varies
with the degree of the protein. Again, we use both the disorder
score (top right) and the number of disordered regions (bottom
right).

disorder of its neighbors). We have also learnt that the aver-
age disorder of the neighbors of a hub protein does not cor-
relate with the number of interactions of the hub protein. A
limitation of our analysis is that we have calculated the dis-
order coefficient for the entire protein sequence, and we do
not specifically study the regions involved directly in pro-
tein–protein binding. This investigation could be refined by
studying the disorder of the residuals involved in the binding
of proteins. The intracellular environment is heterogeneous,
structured, and compartmentalized. Biochemical reactions
are diffusion-limited and proteins are contained in different
compartments [34]. The networks considered in this com-
munication were treated as a homogeneous landscape, be-
cause they do not reflect the underlying cellular and molec-
ular processes. Whether this would also affect the results of
our analysis needs to be determined. By itself, the discovery
that PPI networks have scale-free properties is of limited use
to biologists [35]. An important research direction is investi-
gating what structural or molecular properties of the pro-
teins are the bases for the scale-free architecture of PPI net-
works.

We are grateful for the useful suggestions made by Professors
A. Keith Dunker and Vladimir N. Uversky (Department of Bio-
chemistry and Molecular Biology, Indiana University School of
Medicine), and Professors Predrag Radivojac (Indiana Uni-
versity School of Informatics) during the development of this
work. We would like to thank Alessandro Vespignani (Indiana
University School of Informatics) for his critical comments. The

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



964 S. Schnell et al. Proteomics 2007, 7, 961–964

VL3 predictor for protein disorder was kindly provided by Pro-
fessor Radivojac. S. S. would like to thank the FLAD Computa-
tional Biology Collaboratorium at the Gulbenkian Institute in
Oeiras, Portugal, for hosting and providing facilities used to con-
duct part of this research between 2nd–10th April 2006. This re-
search has been supported by the Division of Information &
Intelligent Systems, National Science Foundation, Grant No.
0513650. SF also acknowledges financial support from the
Volkswagen Foundation. Any opinions, findings, conclusions, or
recommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the National Science
Foundation, the United States Government, or Volkswagen
Foundation.

References

[1] Crampin, E. J., Schnell, S., Prog. Biophys. Mol. Biol. 2004,
86, 1–4.

[2] Koonin, E. V., Wolf, Y. I., Karev, G. P., Nature 2002, 420, 218–
223.

[3] Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. et al., Nature
2000, 407, 651–654.

[4] Wagner, A., Fell, D. A., Proc. R. Soc. Lond. Ser. B 2001, 268,
1803–1810.

[5] Solé, R. V., Ferrer-Cancho, R., Montoya, J. M., Valverde, S.,
Complexity 2003, 8, 20–33.

[6] Albert, R., Jeong, H., Barabási, A.-L., Nature 2000, 406, 378–
382.

[7] von Dassow, G., Meir, E., Munro, E. M., Odell, G. M., Nature
2000, 406, 188–192.

[8] Albert, R., Othmer, H. G., J. Theor. Biol. 2003, 223, 1–18.

[9] Wagner, A., Nat. Genet. 2000, 24, 335–361.

[10] Yeong, H., Mason, S. P., Barabási, A.-L., Oltvai, Z. N., Nature
2001, 411, 41–42.

[11] Barabási, A.-L., Oltvai, Z. N., Nat. Rev. Genet. 2004, 5, 101–
113.

[12] Albert, R., Barabási, A.-L., Rev. Mod. Phys. 2002, 74, 47–97.

[13] Uetz, P., Giot, L., Cagney, G., Mansfield, T. A. et al., Nature
2000, 403, 623–627.

[14] Ito, T., Chiba, T., Ozawa, R., Yoshida, M. et al., Proc. Natl.
Acad. Sci. USA 2001, 98, 4569–4574.

[15] Reboul, J., Vaglio, P., Rual, J. F., Lamesch, P. et al., Nat.
Genet. 2003, 34, 35–41.

[16] Giot, L., Bader, J. S., Brouwer, C., Chaudhuri, A. et al., Sci-
ence 2003, 302, 1727–1736.

[17] Li, S. M., Armstrong, C. M., Bertin, N., Ge, H. et al., Science
2004, 303, 540–543.

[18] Han, J. D. J., Bertin, N., Hao, T., Goldberg, D. S. et al., Nature
2004, 430, 88–93.

[19] Dunker, A. K., Cortese, M. S., Romero, P., Iakoucheva, L. M. et
al., FEBS J. 2005, 272, 5129–5148.

[20] Uversky, V. N., Oldfield, C. J., Dunker, A. K., J. Mol. Recognit.
2005, 18, 343–384.

[21] Fernández, A., Berry, R. S., Proc. Natl. Acad. Sci. USA 2005,
101, 13460–13465.

[22] Wright, P. E., Dyson, H. J., J. Mol. Biol. 1999, 293, 321–331.

[23] Dunker, A. K., Lawson, J. D., Brown, C. J., Williams, R. M. et
al., J. Mol. Graph. Model. 2001, 19, 26–59.

[24] Uversky, V. N., Gillespie, J. R., Fink, A. L., Proteins 2000, 41,
415–427.

[25] Dedmon, M. M., Patel, C. N., Young, G. B., Pielak, G. J., Proc.
Natl. Acad. Sci. USA 2002, 99, 12681–12684.

[26] Bader, G. D., Donaldson, I., Wolting, C., Ouellette, B. F. F. et
al., Nucleic Acids Res. 2001, 29, 242–245.

[27] Obradovic, Z., Peng, K., Vucetic, S., Radivojac, P. et al., Pro-
teins 2003, 53, 566–572.

[28] Vihinen, M., Torkkila, E., Riikonen, P., Proteins 1994, 19, 141–
149.

[29] Wootton, J. C., Comput. Chem. 1994, 18, 269–285.

[30] Fuxreiter, M., Simon, I., Friedrich, P., Tompa, P., J. Mol. Biol.
2004, 338, 1015–1026.

[31] Oldfield, C. J., Cheng, Y., Cortese, M. S., Romero, P. et al.,
Biochemistry 2005, 44, 12454–12470.

[32] Roy, S., Schnell, S., Radivojac, P., Comp. Biol. Chem. 2006,
30, 241–248.

[33] Haynes, C., Oldfield, C. J., Ji, F., Klitgord, N. et al., PLoS
Comput. Biol. 2006, 2, e100.

[34] Schnell, S., Turner, T. E., Prog. Biophys. Mol. Biol. 2004, 85,
235–260.

[35] Bray, D., Science 2003, 301, 1864–1865.

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com


